Discontinuous bifurcation of FRCC with zero-thickness interface modeling
- Autores
- Caggiano, Antonio; Vrech, Sonia Mariel; Etse, Jose Guillermo
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this work, firstly a fracture-based interface constitutive theory, aimed at simulating the cracking mechanisms of Fiber Reinforced Cementitious Composites (FRCCs), is presented. The discontinuous formulation assumes a hyperbolic maximum strength criterion in terms of normal and shear joint stresses. The latter are evaluated on each crack front to simulate the failure behavior of plain and FRCC systems. A non-associated plastic flow rule, in conjunction with a post-cracking softening law, is defined to complete the modeling approach. On the other hand, the use of the most-classical Mixture Theory is followed for taking into account the actions of fibers in concrete matrix. The bridging mechanisms between fibers and active cracks are defined in terms of fiber-to-concrete bond–slip rule and dowel effects. Secondly, a normalized Cracking Indicator (CI) for discrete crack is proposed in the spirit of Hill's indicator for loss of stability of inelastic continua, to effectively evaluate the most critical direction for further loading in terms of the resulting energy release and crack opening, while accounting for the fiber direction and content. After presenting the constitutive theory and, particularly, the novel concept of the CI, numerical analyses at constitutive level are performed to evaluate the evolution of the fracture energy, post-peak strength, and critical cracking directions under variable fiber contents. Different load scenarios are evaluated, and the numerical predictions are compared with experimental data.
Fil: Caggiano, Antonio. Università degli Studi di Genova; Italia
Fil: Vrech, Sonia Mariel. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina
Fil: Etse, Jose Guillermo. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina - Materia
-
CEMENT-BASED COMPOSITES
CRACKING INDICATOR
DISCONTINUOUS-BASED APPROACH
FIBERS
FRACTURE
MESOSCALE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/215220
Ver los metadatos del registro completo
id |
CONICETDig_f527550644622a62d11d7b0e52a8c247 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/215220 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Discontinuous bifurcation of FRCC with zero-thickness interface modelingCaggiano, AntonioVrech, Sonia MarielEtse, Jose GuillermoCEMENT-BASED COMPOSITESCRACKING INDICATORDISCONTINUOUS-BASED APPROACHFIBERSFRACTUREMESOSCALEhttps://purl.org/becyt/ford/2.1https://purl.org/becyt/ford/2In this work, firstly a fracture-based interface constitutive theory, aimed at simulating the cracking mechanisms of Fiber Reinforced Cementitious Composites (FRCCs), is presented. The discontinuous formulation assumes a hyperbolic maximum strength criterion in terms of normal and shear joint stresses. The latter are evaluated on each crack front to simulate the failure behavior of plain and FRCC systems. A non-associated plastic flow rule, in conjunction with a post-cracking softening law, is defined to complete the modeling approach. On the other hand, the use of the most-classical Mixture Theory is followed for taking into account the actions of fibers in concrete matrix. The bridging mechanisms between fibers and active cracks are defined in terms of fiber-to-concrete bond–slip rule and dowel effects. Secondly, a normalized Cracking Indicator (CI) for discrete crack is proposed in the spirit of Hill's indicator for loss of stability of inelastic continua, to effectively evaluate the most critical direction for further loading in terms of the resulting energy release and crack opening, while accounting for the fiber direction and content. After presenting the constitutive theory and, particularly, the novel concept of the CI, numerical analyses at constitutive level are performed to evaluate the evolution of the fracture energy, post-peak strength, and critical cracking directions under variable fiber contents. Different load scenarios are evaluated, and the numerical predictions are compared with experimental data.Fil: Caggiano, Antonio. Università degli Studi di Genova; ItaliaFil: Vrech, Sonia Mariel. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; ArgentinaFil: Etse, Jose Guillermo. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; ArgentinaPergamon-Elsevier Science Ltd2023-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/215220Caggiano, Antonio; Vrech, Sonia Mariel; Etse, Jose Guillermo; Discontinuous bifurcation of FRCC with zero-thickness interface modeling; Pergamon-Elsevier Science Ltd; Mechanics Research Communications; 129; 5-2023; 1-90093-6413CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0093641323000460info:eu-repo/semantics/altIdentifier/doi/10.1016/j.mechrescom.2023.104088info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:28:47Zoai:ri.conicet.gov.ar:11336/215220instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:28:48.24CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Discontinuous bifurcation of FRCC with zero-thickness interface modeling |
title |
Discontinuous bifurcation of FRCC with zero-thickness interface modeling |
spellingShingle |
Discontinuous bifurcation of FRCC with zero-thickness interface modeling Caggiano, Antonio CEMENT-BASED COMPOSITES CRACKING INDICATOR DISCONTINUOUS-BASED APPROACH FIBERS FRACTURE MESOSCALE |
title_short |
Discontinuous bifurcation of FRCC with zero-thickness interface modeling |
title_full |
Discontinuous bifurcation of FRCC with zero-thickness interface modeling |
title_fullStr |
Discontinuous bifurcation of FRCC with zero-thickness interface modeling |
title_full_unstemmed |
Discontinuous bifurcation of FRCC with zero-thickness interface modeling |
title_sort |
Discontinuous bifurcation of FRCC with zero-thickness interface modeling |
dc.creator.none.fl_str_mv |
Caggiano, Antonio Vrech, Sonia Mariel Etse, Jose Guillermo |
author |
Caggiano, Antonio |
author_facet |
Caggiano, Antonio Vrech, Sonia Mariel Etse, Jose Guillermo |
author_role |
author |
author2 |
Vrech, Sonia Mariel Etse, Jose Guillermo |
author2_role |
author author |
dc.subject.none.fl_str_mv |
CEMENT-BASED COMPOSITES CRACKING INDICATOR DISCONTINUOUS-BASED APPROACH FIBERS FRACTURE MESOSCALE |
topic |
CEMENT-BASED COMPOSITES CRACKING INDICATOR DISCONTINUOUS-BASED APPROACH FIBERS FRACTURE MESOSCALE |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.1 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
In this work, firstly a fracture-based interface constitutive theory, aimed at simulating the cracking mechanisms of Fiber Reinforced Cementitious Composites (FRCCs), is presented. The discontinuous formulation assumes a hyperbolic maximum strength criterion in terms of normal and shear joint stresses. The latter are evaluated on each crack front to simulate the failure behavior of plain and FRCC systems. A non-associated plastic flow rule, in conjunction with a post-cracking softening law, is defined to complete the modeling approach. On the other hand, the use of the most-classical Mixture Theory is followed for taking into account the actions of fibers in concrete matrix. The bridging mechanisms between fibers and active cracks are defined in terms of fiber-to-concrete bond–slip rule and dowel effects. Secondly, a normalized Cracking Indicator (CI) for discrete crack is proposed in the spirit of Hill's indicator for loss of stability of inelastic continua, to effectively evaluate the most critical direction for further loading in terms of the resulting energy release and crack opening, while accounting for the fiber direction and content. After presenting the constitutive theory and, particularly, the novel concept of the CI, numerical analyses at constitutive level are performed to evaluate the evolution of the fracture energy, post-peak strength, and critical cracking directions under variable fiber contents. Different load scenarios are evaluated, and the numerical predictions are compared with experimental data. Fil: Caggiano, Antonio. Università degli Studi di Genova; Italia Fil: Vrech, Sonia Mariel. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina Fil: Etse, Jose Guillermo. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina |
description |
In this work, firstly a fracture-based interface constitutive theory, aimed at simulating the cracking mechanisms of Fiber Reinforced Cementitious Composites (FRCCs), is presented. The discontinuous formulation assumes a hyperbolic maximum strength criterion in terms of normal and shear joint stresses. The latter are evaluated on each crack front to simulate the failure behavior of plain and FRCC systems. A non-associated plastic flow rule, in conjunction with a post-cracking softening law, is defined to complete the modeling approach. On the other hand, the use of the most-classical Mixture Theory is followed for taking into account the actions of fibers in concrete matrix. The bridging mechanisms between fibers and active cracks are defined in terms of fiber-to-concrete bond–slip rule and dowel effects. Secondly, a normalized Cracking Indicator (CI) for discrete crack is proposed in the spirit of Hill's indicator for loss of stability of inelastic continua, to effectively evaluate the most critical direction for further loading in terms of the resulting energy release and crack opening, while accounting for the fiber direction and content. After presenting the constitutive theory and, particularly, the novel concept of the CI, numerical analyses at constitutive level are performed to evaluate the evolution of the fracture energy, post-peak strength, and critical cracking directions under variable fiber contents. Different load scenarios are evaluated, and the numerical predictions are compared with experimental data. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/215220 Caggiano, Antonio; Vrech, Sonia Mariel; Etse, Jose Guillermo; Discontinuous bifurcation of FRCC with zero-thickness interface modeling; Pergamon-Elsevier Science Ltd; Mechanics Research Communications; 129; 5-2023; 1-9 0093-6413 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/215220 |
identifier_str_mv |
Caggiano, Antonio; Vrech, Sonia Mariel; Etse, Jose Guillermo; Discontinuous bifurcation of FRCC with zero-thickness interface modeling; Pergamon-Elsevier Science Ltd; Mechanics Research Communications; 129; 5-2023; 1-9 0093-6413 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0093641323000460 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.mechrescom.2023.104088 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614292623589376 |
score |
13.070432 |