Discontinuous bifurcation of FRCC with zero-thickness interface modeling

Autores
Caggiano, Antonio; Vrech, Sonia Mariel; Etse, Jose Guillermo
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this work, firstly a fracture-based interface constitutive theory, aimed at simulating the cracking mechanisms of Fiber Reinforced Cementitious Composites (FRCCs), is presented. The discontinuous formulation assumes a hyperbolic maximum strength criterion in terms of normal and shear joint stresses. The latter are evaluated on each crack front to simulate the failure behavior of plain and FRCC systems. A non-associated plastic flow rule, in conjunction with a post-cracking softening law, is defined to complete the modeling approach. On the other hand, the use of the most-classical Mixture Theory is followed for taking into account the actions of fibers in concrete matrix. The bridging mechanisms between fibers and active cracks are defined in terms of fiber-to-concrete bond–slip rule and dowel effects. Secondly, a normalized Cracking Indicator (CI) for discrete crack is proposed in the spirit of Hill's indicator for loss of stability of inelastic continua, to effectively evaluate the most critical direction for further loading in terms of the resulting energy release and crack opening, while accounting for the fiber direction and content. After presenting the constitutive theory and, particularly, the novel concept of the CI, numerical analyses at constitutive level are performed to evaluate the evolution of the fracture energy, post-peak strength, and critical cracking directions under variable fiber contents. Different load scenarios are evaluated, and the numerical predictions are compared with experimental data.
Fil: Caggiano, Antonio. Università degli Studi di Genova; Italia
Fil: Vrech, Sonia Mariel. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina
Fil: Etse, Jose Guillermo. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina
Materia
CEMENT-BASED COMPOSITES
CRACKING INDICATOR
DISCONTINUOUS-BASED APPROACH
FIBERS
FRACTURE
MESOSCALE
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/215220

id CONICETDig_f527550644622a62d11d7b0e52a8c247
oai_identifier_str oai:ri.conicet.gov.ar:11336/215220
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Discontinuous bifurcation of FRCC with zero-thickness interface modelingCaggiano, AntonioVrech, Sonia MarielEtse, Jose GuillermoCEMENT-BASED COMPOSITESCRACKING INDICATORDISCONTINUOUS-BASED APPROACHFIBERSFRACTUREMESOSCALEhttps://purl.org/becyt/ford/2.1https://purl.org/becyt/ford/2In this work, firstly a fracture-based interface constitutive theory, aimed at simulating the cracking mechanisms of Fiber Reinforced Cementitious Composites (FRCCs), is presented. The discontinuous formulation assumes a hyperbolic maximum strength criterion in terms of normal and shear joint stresses. The latter are evaluated on each crack front to simulate the failure behavior of plain and FRCC systems. A non-associated plastic flow rule, in conjunction with a post-cracking softening law, is defined to complete the modeling approach. On the other hand, the use of the most-classical Mixture Theory is followed for taking into account the actions of fibers in concrete matrix. The bridging mechanisms between fibers and active cracks are defined in terms of fiber-to-concrete bond–slip rule and dowel effects. Secondly, a normalized Cracking Indicator (CI) for discrete crack is proposed in the spirit of Hill's indicator for loss of stability of inelastic continua, to effectively evaluate the most critical direction for further loading in terms of the resulting energy release and crack opening, while accounting for the fiber direction and content. After presenting the constitutive theory and, particularly, the novel concept of the CI, numerical analyses at constitutive level are performed to evaluate the evolution of the fracture energy, post-peak strength, and critical cracking directions under variable fiber contents. Different load scenarios are evaluated, and the numerical predictions are compared with experimental data.Fil: Caggiano, Antonio. Università degli Studi di Genova; ItaliaFil: Vrech, Sonia Mariel. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; ArgentinaFil: Etse, Jose Guillermo. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; ArgentinaPergamon-Elsevier Science Ltd2023-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/215220Caggiano, Antonio; Vrech, Sonia Mariel; Etse, Jose Guillermo; Discontinuous bifurcation of FRCC with zero-thickness interface modeling; Pergamon-Elsevier Science Ltd; Mechanics Research Communications; 129; 5-2023; 1-90093-6413CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0093641323000460info:eu-repo/semantics/altIdentifier/doi/10.1016/j.mechrescom.2023.104088info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:28:47Zoai:ri.conicet.gov.ar:11336/215220instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:28:48.24CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Discontinuous bifurcation of FRCC with zero-thickness interface modeling
title Discontinuous bifurcation of FRCC with zero-thickness interface modeling
spellingShingle Discontinuous bifurcation of FRCC with zero-thickness interface modeling
Caggiano, Antonio
CEMENT-BASED COMPOSITES
CRACKING INDICATOR
DISCONTINUOUS-BASED APPROACH
FIBERS
FRACTURE
MESOSCALE
title_short Discontinuous bifurcation of FRCC with zero-thickness interface modeling
title_full Discontinuous bifurcation of FRCC with zero-thickness interface modeling
title_fullStr Discontinuous bifurcation of FRCC with zero-thickness interface modeling
title_full_unstemmed Discontinuous bifurcation of FRCC with zero-thickness interface modeling
title_sort Discontinuous bifurcation of FRCC with zero-thickness interface modeling
dc.creator.none.fl_str_mv Caggiano, Antonio
Vrech, Sonia Mariel
Etse, Jose Guillermo
author Caggiano, Antonio
author_facet Caggiano, Antonio
Vrech, Sonia Mariel
Etse, Jose Guillermo
author_role author
author2 Vrech, Sonia Mariel
Etse, Jose Guillermo
author2_role author
author
dc.subject.none.fl_str_mv CEMENT-BASED COMPOSITES
CRACKING INDICATOR
DISCONTINUOUS-BASED APPROACH
FIBERS
FRACTURE
MESOSCALE
topic CEMENT-BASED COMPOSITES
CRACKING INDICATOR
DISCONTINUOUS-BASED APPROACH
FIBERS
FRACTURE
MESOSCALE
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.1
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv In this work, firstly a fracture-based interface constitutive theory, aimed at simulating the cracking mechanisms of Fiber Reinforced Cementitious Composites (FRCCs), is presented. The discontinuous formulation assumes a hyperbolic maximum strength criterion in terms of normal and shear joint stresses. The latter are evaluated on each crack front to simulate the failure behavior of plain and FRCC systems. A non-associated plastic flow rule, in conjunction with a post-cracking softening law, is defined to complete the modeling approach. On the other hand, the use of the most-classical Mixture Theory is followed for taking into account the actions of fibers in concrete matrix. The bridging mechanisms between fibers and active cracks are defined in terms of fiber-to-concrete bond–slip rule and dowel effects. Secondly, a normalized Cracking Indicator (CI) for discrete crack is proposed in the spirit of Hill's indicator for loss of stability of inelastic continua, to effectively evaluate the most critical direction for further loading in terms of the resulting energy release and crack opening, while accounting for the fiber direction and content. After presenting the constitutive theory and, particularly, the novel concept of the CI, numerical analyses at constitutive level are performed to evaluate the evolution of the fracture energy, post-peak strength, and critical cracking directions under variable fiber contents. Different load scenarios are evaluated, and the numerical predictions are compared with experimental data.
Fil: Caggiano, Antonio. Università degli Studi di Genova; Italia
Fil: Vrech, Sonia Mariel. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina
Fil: Etse, Jose Guillermo. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina
description In this work, firstly a fracture-based interface constitutive theory, aimed at simulating the cracking mechanisms of Fiber Reinforced Cementitious Composites (FRCCs), is presented. The discontinuous formulation assumes a hyperbolic maximum strength criterion in terms of normal and shear joint stresses. The latter are evaluated on each crack front to simulate the failure behavior of plain and FRCC systems. A non-associated plastic flow rule, in conjunction with a post-cracking softening law, is defined to complete the modeling approach. On the other hand, the use of the most-classical Mixture Theory is followed for taking into account the actions of fibers in concrete matrix. The bridging mechanisms between fibers and active cracks are defined in terms of fiber-to-concrete bond–slip rule and dowel effects. Secondly, a normalized Cracking Indicator (CI) for discrete crack is proposed in the spirit of Hill's indicator for loss of stability of inelastic continua, to effectively evaluate the most critical direction for further loading in terms of the resulting energy release and crack opening, while accounting for the fiber direction and content. After presenting the constitutive theory and, particularly, the novel concept of the CI, numerical analyses at constitutive level are performed to evaluate the evolution of the fracture energy, post-peak strength, and critical cracking directions under variable fiber contents. Different load scenarios are evaluated, and the numerical predictions are compared with experimental data.
publishDate 2023
dc.date.none.fl_str_mv 2023-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/215220
Caggiano, Antonio; Vrech, Sonia Mariel; Etse, Jose Guillermo; Discontinuous bifurcation of FRCC with zero-thickness interface modeling; Pergamon-Elsevier Science Ltd; Mechanics Research Communications; 129; 5-2023; 1-9
0093-6413
CONICET Digital
CONICET
url http://hdl.handle.net/11336/215220
identifier_str_mv Caggiano, Antonio; Vrech, Sonia Mariel; Etse, Jose Guillermo; Discontinuous bifurcation of FRCC with zero-thickness interface modeling; Pergamon-Elsevier Science Ltd; Mechanics Research Communications; 129; 5-2023; 1-9
0093-6413
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0093641323000460
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.mechrescom.2023.104088
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614292623589376
score 13.070432