Thermodynamically consistent elasto-plastic microplane formulation for fiber reinforced concrete
- Autores
- Vrech, Sonia Mariel; Etse, Jose Guillermo; Caggiano, Antonio
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this work a thermodynamically consistent elasto-plastic microplane constitutive theory, aimed at simulating the failure behavior of Steel Fiber Reinforced Concrete (SFRC), is developed. The continuum (smeared crack) formulation, based on the microplane theory, assumes a parabolic maximum strength criterion in terms of normal and shear (micro-)stresses evaluated on each microplane to simulate the failure behavior of concrete. In the high confinement regime, a non-associated plastic flow rule is also defined in terms of microplane stresses. The well-known “Mixture Theory” is considered to account for the presence of fibers in concrete matrix. The interaction between steel fibers and cracked concrete in the form of fiber-to-concrete bond-slip and dowel mechanisms is taken into account. The complete formulation is fully consistent with the thermodynamic laws. After describing the proposed constitutive theory, numerical analyses at constitutive level of SFRC failure behavior are presented and discussed. Thereby, the variations of the fracture energy, post-peak strength and cracking behavior with the fiber contents are evaluated and compared against experimental data. The attention also focuses on the evaluation of the sensitivity of SFRC failure predictions with the proposed constitutive model regarding fiber orientation on one hand, and the bond-slip bridging actions and dowel mechanism on the other hand.
Fil: Vrech, Sonia Mariel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Tucuman. Facultad de Cs.exactas y Tecnologia. Centro de Metodos Numericos y Computacionales En Ingenieria; Argentina
Fil: Etse, Jose Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Tucuman. Facultad de Cs.exactas y Tecnologia. Centro de Metodos Numericos y Computacionales En Ingenieria; Argentina. Universidad de Buenos Aires. Facultad de Ingenieria. Laboratorio de Metodos Numericos En Ingenieria; Argentina
Fil: Caggiano, Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ingenieria. Laboratorio de Metodos Numericos En Ingenieria; Argentina - Materia
-
Microplanes
Plasticity
Failure
Mixture
Steel Fibers Reinforcement - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/12836
Ver los metadatos del registro completo
id |
CONICETDig_103659c9fbb3ca5e93e8cb6766f3f0a2 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/12836 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Thermodynamically consistent elasto-plastic microplane formulation for fiber reinforced concreteVrech, Sonia MarielEtse, Jose GuillermoCaggiano, AntonioMicroplanesPlasticityFailureMixtureSteel Fibers Reinforcementhttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2In this work a thermodynamically consistent elasto-plastic microplane constitutive theory, aimed at simulating the failure behavior of Steel Fiber Reinforced Concrete (SFRC), is developed. The continuum (smeared crack) formulation, based on the microplane theory, assumes a parabolic maximum strength criterion in terms of normal and shear (micro-)stresses evaluated on each microplane to simulate the failure behavior of concrete. In the high confinement regime, a non-associated plastic flow rule is also defined in terms of microplane stresses. The well-known “Mixture Theory” is considered to account for the presence of fibers in concrete matrix. The interaction between steel fibers and cracked concrete in the form of fiber-to-concrete bond-slip and dowel mechanisms is taken into account. The complete formulation is fully consistent with the thermodynamic laws. After describing the proposed constitutive theory, numerical analyses at constitutive level of SFRC failure behavior are presented and discussed. Thereby, the variations of the fracture energy, post-peak strength and cracking behavior with the fiber contents are evaluated and compared against experimental data. The attention also focuses on the evaluation of the sensitivity of SFRC failure predictions with the proposed constitutive model regarding fiber orientation on one hand, and the bond-slip bridging actions and dowel mechanism on the other hand.Fil: Vrech, Sonia Mariel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Tucuman. Facultad de Cs.exactas y Tecnologia. Centro de Metodos Numericos y Computacionales En Ingenieria; ArgentinaFil: Etse, Jose Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Tucuman. Facultad de Cs.exactas y Tecnologia. Centro de Metodos Numericos y Computacionales En Ingenieria; Argentina. Universidad de Buenos Aires. Facultad de Ingenieria. Laboratorio de Metodos Numericos En Ingenieria; ArgentinaFil: Caggiano, Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ingenieria. Laboratorio de Metodos Numericos En Ingenieria; ArgentinaElsevier2016-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/12836Vrech, Sonia Mariel; Etse, Jose Guillermo; Caggiano, Antonio; Thermodynamically consistent elasto-plastic microplane formulation for fiber reinforced concrete; Elsevier; International Journal Of Solids And Structures; 81; 3-2016; 337-3490020-7683enginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.ijsolstr.2015.12.007info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0020768315004990info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:38:36Zoai:ri.conicet.gov.ar:11336/12836instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:38:37.134CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Thermodynamically consistent elasto-plastic microplane formulation for fiber reinforced concrete |
title |
Thermodynamically consistent elasto-plastic microplane formulation for fiber reinforced concrete |
spellingShingle |
Thermodynamically consistent elasto-plastic microplane formulation for fiber reinforced concrete Vrech, Sonia Mariel Microplanes Plasticity Failure Mixture Steel Fibers Reinforcement |
title_short |
Thermodynamically consistent elasto-plastic microplane formulation for fiber reinforced concrete |
title_full |
Thermodynamically consistent elasto-plastic microplane formulation for fiber reinforced concrete |
title_fullStr |
Thermodynamically consistent elasto-plastic microplane formulation for fiber reinforced concrete |
title_full_unstemmed |
Thermodynamically consistent elasto-plastic microplane formulation for fiber reinforced concrete |
title_sort |
Thermodynamically consistent elasto-plastic microplane formulation for fiber reinforced concrete |
dc.creator.none.fl_str_mv |
Vrech, Sonia Mariel Etse, Jose Guillermo Caggiano, Antonio |
author |
Vrech, Sonia Mariel |
author_facet |
Vrech, Sonia Mariel Etse, Jose Guillermo Caggiano, Antonio |
author_role |
author |
author2 |
Etse, Jose Guillermo Caggiano, Antonio |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Microplanes Plasticity Failure Mixture Steel Fibers Reinforcement |
topic |
Microplanes Plasticity Failure Mixture Steel Fibers Reinforcement |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.5 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
In this work a thermodynamically consistent elasto-plastic microplane constitutive theory, aimed at simulating the failure behavior of Steel Fiber Reinforced Concrete (SFRC), is developed. The continuum (smeared crack) formulation, based on the microplane theory, assumes a parabolic maximum strength criterion in terms of normal and shear (micro-)stresses evaluated on each microplane to simulate the failure behavior of concrete. In the high confinement regime, a non-associated plastic flow rule is also defined in terms of microplane stresses. The well-known “Mixture Theory” is considered to account for the presence of fibers in concrete matrix. The interaction between steel fibers and cracked concrete in the form of fiber-to-concrete bond-slip and dowel mechanisms is taken into account. The complete formulation is fully consistent with the thermodynamic laws. After describing the proposed constitutive theory, numerical analyses at constitutive level of SFRC failure behavior are presented and discussed. Thereby, the variations of the fracture energy, post-peak strength and cracking behavior with the fiber contents are evaluated and compared against experimental data. The attention also focuses on the evaluation of the sensitivity of SFRC failure predictions with the proposed constitutive model regarding fiber orientation on one hand, and the bond-slip bridging actions and dowel mechanism on the other hand. Fil: Vrech, Sonia Mariel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Tucuman. Facultad de Cs.exactas y Tecnologia. Centro de Metodos Numericos y Computacionales En Ingenieria; Argentina Fil: Etse, Jose Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Tucuman. Facultad de Cs.exactas y Tecnologia. Centro de Metodos Numericos y Computacionales En Ingenieria; Argentina. Universidad de Buenos Aires. Facultad de Ingenieria. Laboratorio de Metodos Numericos En Ingenieria; Argentina Fil: Caggiano, Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ingenieria. Laboratorio de Metodos Numericos En Ingenieria; Argentina |
description |
In this work a thermodynamically consistent elasto-plastic microplane constitutive theory, aimed at simulating the failure behavior of Steel Fiber Reinforced Concrete (SFRC), is developed. The continuum (smeared crack) formulation, based on the microplane theory, assumes a parabolic maximum strength criterion in terms of normal and shear (micro-)stresses evaluated on each microplane to simulate the failure behavior of concrete. In the high confinement regime, a non-associated plastic flow rule is also defined in terms of microplane stresses. The well-known “Mixture Theory” is considered to account for the presence of fibers in concrete matrix. The interaction between steel fibers and cracked concrete in the form of fiber-to-concrete bond-slip and dowel mechanisms is taken into account. The complete formulation is fully consistent with the thermodynamic laws. After describing the proposed constitutive theory, numerical analyses at constitutive level of SFRC failure behavior are presented and discussed. Thereby, the variations of the fracture energy, post-peak strength and cracking behavior with the fiber contents are evaluated and compared against experimental data. The attention also focuses on the evaluation of the sensitivity of SFRC failure predictions with the proposed constitutive model regarding fiber orientation on one hand, and the bond-slip bridging actions and dowel mechanism on the other hand. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/12836 Vrech, Sonia Mariel; Etse, Jose Guillermo; Caggiano, Antonio; Thermodynamically consistent elasto-plastic microplane formulation for fiber reinforced concrete; Elsevier; International Journal Of Solids And Structures; 81; 3-2016; 337-349 0020-7683 |
url |
http://hdl.handle.net/11336/12836 |
identifier_str_mv |
Vrech, Sonia Mariel; Etse, Jose Guillermo; Caggiano, Antonio; Thermodynamically consistent elasto-plastic microplane formulation for fiber reinforced concrete; Elsevier; International Journal Of Solids And Structures; 81; 3-2016; 337-349 0020-7683 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ijsolstr.2015.12.007 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0020768315004990 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613220995694592 |
score |
13.070432 |