Multiple solutions for a second order equation with radiation boundary conditions

Autores
Amster, Pablo Gustavo; Kuna, Mariel Paula
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A second order ordinary differential equation with a superlinear term is studied under radiation boundary conditions. Employing the variational method and an accurate shooting-type argument, we prove the existence of at least three or five solutions, depending on the interaction of the nonlinearity with the spectrum of the associated linear operator and the values of the radiation parameters.
Fil: Amster, Pablo Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Kuna, Mariel Paula. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina
Materia
MULTIPLICITY OF SOLUTIONS
RADIATION BOUNDARY CONDITIONS
SECOND ORDER ODES
SHOOTING METHOD
VARIATIONAL METHOD
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/55466

id CONICETDig_5c7eb92ab04b600a4064b1a62ae80796
oai_identifier_str oai:ri.conicet.gov.ar:11336/55466
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Multiple solutions for a second order equation with radiation boundary conditionsAmster, Pablo GustavoKuna, Mariel PaulaMULTIPLICITY OF SOLUTIONSRADIATION BOUNDARY CONDITIONSSECOND ORDER ODESSHOOTING METHODVARIATIONAL METHODhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1A second order ordinary differential equation with a superlinear term is studied under radiation boundary conditions. Employing the variational method and an accurate shooting-type argument, we prove the existence of at least three or five solutions, depending on the interaction of the nonlinearity with the spectrum of the associated linear operator and the values of the radiation parameters.Fil: Amster, Pablo Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaFil: Kuna, Mariel Paula. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; ArgentinaUniv Szeged2017-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/55466Amster, Pablo Gustavo; Kuna, Mariel Paula; Multiple solutions for a second order equation with radiation boundary conditions; Univ Szeged; Electronic Journal Of Qualitative Theory Of Differential Equations; 2017; 37; 4-2017; 1-111417-3875CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=5260info:eu-repo/semantics/altIdentifier/doi/10.14232/ejqtde.2017.1.37info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:56:24Zoai:ri.conicet.gov.ar:11336/55466instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:56:24.259CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Multiple solutions for a second order equation with radiation boundary conditions
title Multiple solutions for a second order equation with radiation boundary conditions
spellingShingle Multiple solutions for a second order equation with radiation boundary conditions
Amster, Pablo Gustavo
MULTIPLICITY OF SOLUTIONS
RADIATION BOUNDARY CONDITIONS
SECOND ORDER ODES
SHOOTING METHOD
VARIATIONAL METHOD
title_short Multiple solutions for a second order equation with radiation boundary conditions
title_full Multiple solutions for a second order equation with radiation boundary conditions
title_fullStr Multiple solutions for a second order equation with radiation boundary conditions
title_full_unstemmed Multiple solutions for a second order equation with radiation boundary conditions
title_sort Multiple solutions for a second order equation with radiation boundary conditions
dc.creator.none.fl_str_mv Amster, Pablo Gustavo
Kuna, Mariel Paula
author Amster, Pablo Gustavo
author_facet Amster, Pablo Gustavo
Kuna, Mariel Paula
author_role author
author2 Kuna, Mariel Paula
author2_role author
dc.subject.none.fl_str_mv MULTIPLICITY OF SOLUTIONS
RADIATION BOUNDARY CONDITIONS
SECOND ORDER ODES
SHOOTING METHOD
VARIATIONAL METHOD
topic MULTIPLICITY OF SOLUTIONS
RADIATION BOUNDARY CONDITIONS
SECOND ORDER ODES
SHOOTING METHOD
VARIATIONAL METHOD
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv A second order ordinary differential equation with a superlinear term is studied under radiation boundary conditions. Employing the variational method and an accurate shooting-type argument, we prove the existence of at least three or five solutions, depending on the interaction of the nonlinearity with the spectrum of the associated linear operator and the values of the radiation parameters.
Fil: Amster, Pablo Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Kuna, Mariel Paula. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina
description A second order ordinary differential equation with a superlinear term is studied under radiation boundary conditions. Employing the variational method and an accurate shooting-type argument, we prove the existence of at least three or five solutions, depending on the interaction of the nonlinearity with the spectrum of the associated linear operator and the values of the radiation parameters.
publishDate 2017
dc.date.none.fl_str_mv 2017-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/55466
Amster, Pablo Gustavo; Kuna, Mariel Paula; Multiple solutions for a second order equation with radiation boundary conditions; Univ Szeged; Electronic Journal Of Qualitative Theory Of Differential Equations; 2017; 37; 4-2017; 1-11
1417-3875
CONICET Digital
CONICET
url http://hdl.handle.net/11336/55466
identifier_str_mv Amster, Pablo Gustavo; Kuna, Mariel Paula; Multiple solutions for a second order equation with radiation boundary conditions; Univ Szeged; Electronic Journal Of Qualitative Theory Of Differential Equations; 2017; 37; 4-2017; 1-11
1417-3875
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=5260
info:eu-repo/semantics/altIdentifier/doi/10.14232/ejqtde.2017.1.37
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Univ Szeged
publisher.none.fl_str_mv Univ Szeged
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613693652860928
score 13.070432