Data-aided CFO estimators based on the averaged cyclic autocorrelation
- Autores
- González, Gustavo José; Gregorio, Fernando Hugo; Cousseau, Juan Edmundo; Werner, Stefan; Wichman, Risto
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Wireless communication systems typically employ a repetitive preamble in each slot which is used for parameter acquisition. The repetitive preamble is useful for estimating the carrier frequency offset (CFO), usually based on the autocorrelation of the received signal. In this paper, we derive a family of novel data-aided CFO estimators. The proposed estimators are based on a new autocorrelation function which is defined using cyclostationary properties of the repetitive preamble. In contrast to previous approaches, the new estimators make use of high-order noise terms leading to an improved performance. We present a detailed analysis of the proposed estimators and provide closed-form expressions for the variance of the estimators. The new estimators are shown to outperform the existing estimators obtaining a moderate improvement at high signal to noise ratio (SNR) and a considerable improvement at low SNR, by means of a reasonable increase in computational complexity.
Fil: González, Gustavo José. Universidad Nacional del Sur. Departamento de Ingenieria Electrica y de Computadoras; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Investigación en Ingeniería Eléctrica; Argentina
Fil: Gregorio, Fernando Hugo. Universidad Nacional del Sur. Departamento de Ingenieria Electrica y de Computadoras; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Investigación en Ingeniería Eléctrica; Argentina
Fil: Cousseau, Juan Edmundo. Universidad Nacional del Sur. Departamento de Ingenieria Electrica y de Computadoras; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Investigación en Ingeniería Eléctrica; Argentina
Fil: Werner, Stefan. Aalto University. School of Electrical Engineering; Finlandia
Fil: Wichman, Risto. Aalto University. School of Electrical Engineering; Finlandia - Materia
-
Cfo Estimators
Cyclostationarity
Data-Aided
Ofdm - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/11769
Ver los metadatos del registro completo
id |
CONICETDig_5c7d3f98170af87fd20b6ce2c61c8ce0 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/11769 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Data-aided CFO estimators based on the averaged cyclic autocorrelationGonzález, Gustavo JoséGregorio, Fernando HugoCousseau, Juan EdmundoWerner, StefanWichman, RistoCfo EstimatorsCyclostationarityData-AidedOfdmhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2Wireless communication systems typically employ a repetitive preamble in each slot which is used for parameter acquisition. The repetitive preamble is useful for estimating the carrier frequency offset (CFO), usually based on the autocorrelation of the received signal. In this paper, we derive a family of novel data-aided CFO estimators. The proposed estimators are based on a new autocorrelation function which is defined using cyclostationary properties of the repetitive preamble. In contrast to previous approaches, the new estimators make use of high-order noise terms leading to an improved performance. We present a detailed analysis of the proposed estimators and provide closed-form expressions for the variance of the estimators. The new estimators are shown to outperform the existing estimators obtaining a moderate improvement at high signal to noise ratio (SNR) and a considerable improvement at low SNR, by means of a reasonable increase in computational complexity.Fil: González, Gustavo José. Universidad Nacional del Sur. Departamento de Ingenieria Electrica y de Computadoras; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Investigación en Ingeniería Eléctrica; ArgentinaFil: Gregorio, Fernando Hugo. Universidad Nacional del Sur. Departamento de Ingenieria Electrica y de Computadoras; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Investigación en Ingeniería Eléctrica; ArgentinaFil: Cousseau, Juan Edmundo. Universidad Nacional del Sur. Departamento de Ingenieria Electrica y de Computadoras; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Investigación en Ingeniería Eléctrica; ArgentinaFil: Werner, Stefan. Aalto University. School of Electrical Engineering; FinlandiaFil: Wichman, Risto. Aalto University. School of Electrical Engineering; FinlandiaElsevier Science2013-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/11769González, Gustavo José; Gregorio, Fernando Hugo; Cousseau, Juan Edmundo; Werner, Stefan; Wichman, Risto; Data-aided CFO estimators based on the averaged cyclic autocorrelation; Elsevier Science; Signal Processing; 93; 1; 1-2013; 217-2290165-1684enginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0165168412002629info:eu-repo/semantics/altIdentifier/url/http://dx.doi.org/10.1016/j.sigpro.2012.07.032info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:54:48Zoai:ri.conicet.gov.ar:11336/11769instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:54:49.139CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Data-aided CFO estimators based on the averaged cyclic autocorrelation |
title |
Data-aided CFO estimators based on the averaged cyclic autocorrelation |
spellingShingle |
Data-aided CFO estimators based on the averaged cyclic autocorrelation González, Gustavo José Cfo Estimators Cyclostationarity Data-Aided Ofdm |
title_short |
Data-aided CFO estimators based on the averaged cyclic autocorrelation |
title_full |
Data-aided CFO estimators based on the averaged cyclic autocorrelation |
title_fullStr |
Data-aided CFO estimators based on the averaged cyclic autocorrelation |
title_full_unstemmed |
Data-aided CFO estimators based on the averaged cyclic autocorrelation |
title_sort |
Data-aided CFO estimators based on the averaged cyclic autocorrelation |
dc.creator.none.fl_str_mv |
González, Gustavo José Gregorio, Fernando Hugo Cousseau, Juan Edmundo Werner, Stefan Wichman, Risto |
author |
González, Gustavo José |
author_facet |
González, Gustavo José Gregorio, Fernando Hugo Cousseau, Juan Edmundo Werner, Stefan Wichman, Risto |
author_role |
author |
author2 |
Gregorio, Fernando Hugo Cousseau, Juan Edmundo Werner, Stefan Wichman, Risto |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Cfo Estimators Cyclostationarity Data-Aided Ofdm |
topic |
Cfo Estimators Cyclostationarity Data-Aided Ofdm |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Wireless communication systems typically employ a repetitive preamble in each slot which is used for parameter acquisition. The repetitive preamble is useful for estimating the carrier frequency offset (CFO), usually based on the autocorrelation of the received signal. In this paper, we derive a family of novel data-aided CFO estimators. The proposed estimators are based on a new autocorrelation function which is defined using cyclostationary properties of the repetitive preamble. In contrast to previous approaches, the new estimators make use of high-order noise terms leading to an improved performance. We present a detailed analysis of the proposed estimators and provide closed-form expressions for the variance of the estimators. The new estimators are shown to outperform the existing estimators obtaining a moderate improvement at high signal to noise ratio (SNR) and a considerable improvement at low SNR, by means of a reasonable increase in computational complexity. Fil: González, Gustavo José. Universidad Nacional del Sur. Departamento de Ingenieria Electrica y de Computadoras; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Investigación en Ingeniería Eléctrica; Argentina Fil: Gregorio, Fernando Hugo. Universidad Nacional del Sur. Departamento de Ingenieria Electrica y de Computadoras; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Investigación en Ingeniería Eléctrica; Argentina Fil: Cousseau, Juan Edmundo. Universidad Nacional del Sur. Departamento de Ingenieria Electrica y de Computadoras; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Investigación en Ingeniería Eléctrica; Argentina Fil: Werner, Stefan. Aalto University. School of Electrical Engineering; Finlandia Fil: Wichman, Risto. Aalto University. School of Electrical Engineering; Finlandia |
description |
Wireless communication systems typically employ a repetitive preamble in each slot which is used for parameter acquisition. The repetitive preamble is useful for estimating the carrier frequency offset (CFO), usually based on the autocorrelation of the received signal. In this paper, we derive a family of novel data-aided CFO estimators. The proposed estimators are based on a new autocorrelation function which is defined using cyclostationary properties of the repetitive preamble. In contrast to previous approaches, the new estimators make use of high-order noise terms leading to an improved performance. We present a detailed analysis of the proposed estimators and provide closed-form expressions for the variance of the estimators. The new estimators are shown to outperform the existing estimators obtaining a moderate improvement at high signal to noise ratio (SNR) and a considerable improvement at low SNR, by means of a reasonable increase in computational complexity. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/11769 González, Gustavo José; Gregorio, Fernando Hugo; Cousseau, Juan Edmundo; Werner, Stefan; Wichman, Risto; Data-aided CFO estimators based on the averaged cyclic autocorrelation; Elsevier Science; Signal Processing; 93; 1; 1-2013; 217-229 0165-1684 |
url |
http://hdl.handle.net/11336/11769 |
identifier_str_mv |
González, Gustavo José; Gregorio, Fernando Hugo; Cousseau, Juan Edmundo; Werner, Stefan; Wichman, Risto; Data-aided CFO estimators based on the averaged cyclic autocorrelation; Elsevier Science; Signal Processing; 93; 1; 1-2013; 217-229 0165-1684 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0165168412002629 info:eu-repo/semantics/altIdentifier/url/http://dx.doi.org/10.1016/j.sigpro.2012.07.032 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269308440281088 |
score |
13.13397 |