Chemical and electrochemical oxidation of silicon surfaces functionalized with APTES: the role of surface roughness in the AuNPs anchoring kinetics

Autores
Klug, Joaquín; Pérez, Luis Alberto; Coronado, Eduardo A.; Lacconi, Gabriela Ines
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Oxidation of Si(111) surfaces is a procedure widely used for their further functionalization with 3-aminopropyltriethoxysilane (APTES). In the present work, the formation of silicon oxide is carried out by chemical and electrochemical oxidation of the hydrogenated-silicon surfaces, giving rise to Si-OxChem and Si-OxEchem surfaces, respectively. Both surfaces are then functionalized with APTES solution to form an aminopropylsilane (APS) film, using two quite different concentrations of APTES (0.001 and 0.1% v/v), to compare two limiting situations. At the lowest APTES concentration, the comparison of the kinetics of gold nanoparticles (AuNPs) anchoring process on both surfaces is found to be quite different, not only in the initial rate of NPs anchoring but also in the maximum percentage of coverage. In contrast, the kinetics behavior is almost the same when the surfaces are modified with the highest APTES concentration, reaching the same value of surface coverage. The different or similar behavior of both surfaces is analyzed by a careful characterization of Si-OxChem and Si-OxEchem surfaces using XP spectroscopy and AFM measurements, before and after APS functionalization. The significant differences in the surface roughness of the Si-Ox samples, together with the determination of the number of −NH3 + moieties after silanization at both APTES concentrations, leads to the conclusion that the availability of −NH3 + moieties is dependent on two factors: the roughness of the Si-OxChem and Si-OxEchem surfaces as well as the concentration of the APTES solutions. When the APS layer is formed at the lowest APTES concentration, surface roughness controls the number of different types of nitrogen functional groups. In contrast, at the highest APTES concentration, the surface roughness does not have any significant role in the number of −NH3 + moieties present on both surfaces. Because the kinetics of AuNPs anchoring depends mainly on the probability of interacting with the −NH3 + groups, the above characterization allows us to explain in a consistent way the kinetics behavior observed for each particular condition of surface preparation.
Fil: Klug, Joaquín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
Fil: Pérez, Luis Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
Fil: Coronado, Eduardo A.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
Fil: Lacconi, Gabriela Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
Materia
Silicon Surfaces
Surface Functionalization
Gold Nanoparticles
Kinetics Processes
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/25429

id CONICETDig_5c1cfcdcb4f8f519c391ea1420914dcf
oai_identifier_str oai:ri.conicet.gov.ar:11336/25429
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Chemical and electrochemical oxidation of silicon surfaces functionalized with APTES: the role of surface roughness in the AuNPs anchoring kineticsKlug, JoaquínPérez, Luis AlbertoCoronado, Eduardo A.Lacconi, Gabriela InesSilicon SurfacesSurface FunctionalizationGold NanoparticlesKinetics Processeshttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Oxidation of Si(111) surfaces is a procedure widely used for their further functionalization with 3-aminopropyltriethoxysilane (APTES). In the present work, the formation of silicon oxide is carried out by chemical and electrochemical oxidation of the hydrogenated-silicon surfaces, giving rise to Si-OxChem and Si-OxEchem surfaces, respectively. Both surfaces are then functionalized with APTES solution to form an aminopropylsilane (APS) film, using two quite different concentrations of APTES (0.001 and 0.1% v/v), to compare two limiting situations. At the lowest APTES concentration, the comparison of the kinetics of gold nanoparticles (AuNPs) anchoring process on both surfaces is found to be quite different, not only in the initial rate of NPs anchoring but also in the maximum percentage of coverage. In contrast, the kinetics behavior is almost the same when the surfaces are modified with the highest APTES concentration, reaching the same value of surface coverage. The different or similar behavior of both surfaces is analyzed by a careful characterization of Si-OxChem and Si-OxEchem surfaces using XP spectroscopy and AFM measurements, before and after APS functionalization. The significant differences in the surface roughness of the Si-Ox samples, together with the determination of the number of −NH3 + moieties after silanization at both APTES concentrations, leads to the conclusion that the availability of −NH3 + moieties is dependent on two factors: the roughness of the Si-OxChem and Si-OxEchem surfaces as well as the concentration of the APTES solutions. When the APS layer is formed at the lowest APTES concentration, surface roughness controls the number of different types of nitrogen functional groups. In contrast, at the highest APTES concentration, the surface roughness does not have any significant role in the number of −NH3 + moieties present on both surfaces. Because the kinetics of AuNPs anchoring depends mainly on the probability of interacting with the −NH3 + groups, the above characterization allows us to explain in a consistent way the kinetics behavior observed for each particular condition of surface preparation.Fil: Klug, Joaquín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaFil: Pérez, Luis Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaFil: Coronado, Eduardo A.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaFil: Lacconi, Gabriela Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaAmerican Chemical Society2013-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/25429Klug, Joaquín; Pérez, Luis Alberto; Coronado, Eduardo A.; Lacconi, Gabriela Ines; Chemical and electrochemical oxidation of silicon surfaces functionalized with APTES: the role of surface roughness in the AuNPs anchoring kinetics; American Chemical Society; Journal of Physical Chemistry C; 117; 21; 5-2013; 11317-113271932-7447CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1021/jp212613finfo:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/abs/10.1021/jp212613finfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:03:06Zoai:ri.conicet.gov.ar:11336/25429instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:03:06.756CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Chemical and electrochemical oxidation of silicon surfaces functionalized with APTES: the role of surface roughness in the AuNPs anchoring kinetics
title Chemical and electrochemical oxidation of silicon surfaces functionalized with APTES: the role of surface roughness in the AuNPs anchoring kinetics
spellingShingle Chemical and electrochemical oxidation of silicon surfaces functionalized with APTES: the role of surface roughness in the AuNPs anchoring kinetics
Klug, Joaquín
Silicon Surfaces
Surface Functionalization
Gold Nanoparticles
Kinetics Processes
title_short Chemical and electrochemical oxidation of silicon surfaces functionalized with APTES: the role of surface roughness in the AuNPs anchoring kinetics
title_full Chemical and electrochemical oxidation of silicon surfaces functionalized with APTES: the role of surface roughness in the AuNPs anchoring kinetics
title_fullStr Chemical and electrochemical oxidation of silicon surfaces functionalized with APTES: the role of surface roughness in the AuNPs anchoring kinetics
title_full_unstemmed Chemical and electrochemical oxidation of silicon surfaces functionalized with APTES: the role of surface roughness in the AuNPs anchoring kinetics
title_sort Chemical and electrochemical oxidation of silicon surfaces functionalized with APTES: the role of surface roughness in the AuNPs anchoring kinetics
dc.creator.none.fl_str_mv Klug, Joaquín
Pérez, Luis Alberto
Coronado, Eduardo A.
Lacconi, Gabriela Ines
author Klug, Joaquín
author_facet Klug, Joaquín
Pérez, Luis Alberto
Coronado, Eduardo A.
Lacconi, Gabriela Ines
author_role author
author2 Pérez, Luis Alberto
Coronado, Eduardo A.
Lacconi, Gabriela Ines
author2_role author
author
author
dc.subject.none.fl_str_mv Silicon Surfaces
Surface Functionalization
Gold Nanoparticles
Kinetics Processes
topic Silicon Surfaces
Surface Functionalization
Gold Nanoparticles
Kinetics Processes
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Oxidation of Si(111) surfaces is a procedure widely used for their further functionalization with 3-aminopropyltriethoxysilane (APTES). In the present work, the formation of silicon oxide is carried out by chemical and electrochemical oxidation of the hydrogenated-silicon surfaces, giving rise to Si-OxChem and Si-OxEchem surfaces, respectively. Both surfaces are then functionalized with APTES solution to form an aminopropylsilane (APS) film, using two quite different concentrations of APTES (0.001 and 0.1% v/v), to compare two limiting situations. At the lowest APTES concentration, the comparison of the kinetics of gold nanoparticles (AuNPs) anchoring process on both surfaces is found to be quite different, not only in the initial rate of NPs anchoring but also in the maximum percentage of coverage. In contrast, the kinetics behavior is almost the same when the surfaces are modified with the highest APTES concentration, reaching the same value of surface coverage. The different or similar behavior of both surfaces is analyzed by a careful characterization of Si-OxChem and Si-OxEchem surfaces using XP spectroscopy and AFM measurements, before and after APS functionalization. The significant differences in the surface roughness of the Si-Ox samples, together with the determination of the number of −NH3 + moieties after silanization at both APTES concentrations, leads to the conclusion that the availability of −NH3 + moieties is dependent on two factors: the roughness of the Si-OxChem and Si-OxEchem surfaces as well as the concentration of the APTES solutions. When the APS layer is formed at the lowest APTES concentration, surface roughness controls the number of different types of nitrogen functional groups. In contrast, at the highest APTES concentration, the surface roughness does not have any significant role in the number of −NH3 + moieties present on both surfaces. Because the kinetics of AuNPs anchoring depends mainly on the probability of interacting with the −NH3 + groups, the above characterization allows us to explain in a consistent way the kinetics behavior observed for each particular condition of surface preparation.
Fil: Klug, Joaquín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
Fil: Pérez, Luis Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
Fil: Coronado, Eduardo A.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
Fil: Lacconi, Gabriela Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
description Oxidation of Si(111) surfaces is a procedure widely used for their further functionalization with 3-aminopropyltriethoxysilane (APTES). In the present work, the formation of silicon oxide is carried out by chemical and electrochemical oxidation of the hydrogenated-silicon surfaces, giving rise to Si-OxChem and Si-OxEchem surfaces, respectively. Both surfaces are then functionalized with APTES solution to form an aminopropylsilane (APS) film, using two quite different concentrations of APTES (0.001 and 0.1% v/v), to compare two limiting situations. At the lowest APTES concentration, the comparison of the kinetics of gold nanoparticles (AuNPs) anchoring process on both surfaces is found to be quite different, not only in the initial rate of NPs anchoring but also in the maximum percentage of coverage. In contrast, the kinetics behavior is almost the same when the surfaces are modified with the highest APTES concentration, reaching the same value of surface coverage. The different or similar behavior of both surfaces is analyzed by a careful characterization of Si-OxChem and Si-OxEchem surfaces using XP spectroscopy and AFM measurements, before and after APS functionalization. The significant differences in the surface roughness of the Si-Ox samples, together with the determination of the number of −NH3 + moieties after silanization at both APTES concentrations, leads to the conclusion that the availability of −NH3 + moieties is dependent on two factors: the roughness of the Si-OxChem and Si-OxEchem surfaces as well as the concentration of the APTES solutions. When the APS layer is formed at the lowest APTES concentration, surface roughness controls the number of different types of nitrogen functional groups. In contrast, at the highest APTES concentration, the surface roughness does not have any significant role in the number of −NH3 + moieties present on both surfaces. Because the kinetics of AuNPs anchoring depends mainly on the probability of interacting with the −NH3 + groups, the above characterization allows us to explain in a consistent way the kinetics behavior observed for each particular condition of surface preparation.
publishDate 2013
dc.date.none.fl_str_mv 2013-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/25429
Klug, Joaquín; Pérez, Luis Alberto; Coronado, Eduardo A.; Lacconi, Gabriela Ines; Chemical and electrochemical oxidation of silicon surfaces functionalized with APTES: the role of surface roughness in the AuNPs anchoring kinetics; American Chemical Society; Journal of Physical Chemistry C; 117; 21; 5-2013; 11317-11327
1932-7447
CONICET Digital
CONICET
url http://hdl.handle.net/11336/25429
identifier_str_mv Klug, Joaquín; Pérez, Luis Alberto; Coronado, Eduardo A.; Lacconi, Gabriela Ines; Chemical and electrochemical oxidation of silicon surfaces functionalized with APTES: the role of surface roughness in the AuNPs anchoring kinetics; American Chemical Society; Journal of Physical Chemistry C; 117; 21; 5-2013; 11317-11327
1932-7447
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1021/jp212613f
info:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/abs/10.1021/jp212613f
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Chemical Society
publisher.none.fl_str_mv American Chemical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842980060894593024
score 12.993085