A robust predictive approach for canonical correlation analysis

Autores
Adrover, Jorge Gabriel; Donato, Stella Maris
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Canonical correlation analysis (CCA) is a dimension-reduction technique in which two random vectors from high dimensional spaces are reduced to a new pair of low dimensional vectors after applying linear transformations to each of them, retaining as much information as possible. The components of the transformed vectors are called canonical variables. One seeks linear combinations of the original vectors maximizing the correlation subject to the constraint that they are to be uncorrelated with the previous canonical variables within each vector. By these means one actually gets two transformed random vectors of lower dimension whose expected square distance has been minimized subject to have uncorrelated components of unit variance within each vector. Since the closeness between the two transformed vectors is evaluated through a highly sensitive measure to outlying observations as the mean square loss, the linear transformations we are seeking are also affected. In this paper we use a robust univariate dispersion measure (like an M-scale) based on the distance of the transformed vectors to derive robust S-estimators for canonical vectors and correlations. An iterative algorithm is performed by exploiting the existence of efficient algorithms for S-estimation in the context of Principal Component Analysis. Some convergence properties are analyzed for the iterative algorithm. A simulation study is conducted to compare the new procedure with some other robust competitors available in the literature, showing a remarkable performance. We also prove that the proposal is Fisher consistent.
Fil: Adrover, Jorge Gabriel. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Fil: Donato, Stella Maris. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina
Materia
CANONICAL CORRELATION ANALYSIS
M-SCALES
MEAN RELATIVE PREDICTION ERROR
S-ESTIMATION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/113184

id CONICETDig_42a048ca9620b3bacaf7cf2024ab6ce3
oai_identifier_str oai:ri.conicet.gov.ar:11336/113184
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A robust predictive approach for canonical correlation analysisAdrover, Jorge GabrielDonato, Stella MarisCANONICAL CORRELATION ANALYSISM-SCALESMEAN RELATIVE PREDICTION ERRORS-ESTIMATIONhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Canonical correlation analysis (CCA) is a dimension-reduction technique in which two random vectors from high dimensional spaces are reduced to a new pair of low dimensional vectors after applying linear transformations to each of them, retaining as much information as possible. The components of the transformed vectors are called canonical variables. One seeks linear combinations of the original vectors maximizing the correlation subject to the constraint that they are to be uncorrelated with the previous canonical variables within each vector. By these means one actually gets two transformed random vectors of lower dimension whose expected square distance has been minimized subject to have uncorrelated components of unit variance within each vector. Since the closeness between the two transformed vectors is evaluated through a highly sensitive measure to outlying observations as the mean square loss, the linear transformations we are seeking are also affected. In this paper we use a robust univariate dispersion measure (like an M-scale) based on the distance of the transformed vectors to derive robust S-estimators for canonical vectors and correlations. An iterative algorithm is performed by exploiting the existence of efficient algorithms for S-estimation in the context of Principal Component Analysis. Some convergence properties are analyzed for the iterative algorithm. A simulation study is conducted to compare the new procedure with some other robust competitors available in the literature, showing a remarkable performance. We also prove that the proposal is Fisher consistent.Fil: Adrover, Jorge Gabriel. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaFil: Donato, Stella Maris. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; ArgentinaElsevier Inc2015-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/113184Adrover, Jorge Gabriel; Donato, Stella Maris; A robust predictive approach for canonical correlation analysis; Elsevier Inc; Journal Of Multivariate Analysis; 133; 1-2015; 356-3760047-259XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0047259X14002048info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmva.2014.09.007info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:06:23Zoai:ri.conicet.gov.ar:11336/113184instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:06:23.749CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A robust predictive approach for canonical correlation analysis
title A robust predictive approach for canonical correlation analysis
spellingShingle A robust predictive approach for canonical correlation analysis
Adrover, Jorge Gabriel
CANONICAL CORRELATION ANALYSIS
M-SCALES
MEAN RELATIVE PREDICTION ERROR
S-ESTIMATION
title_short A robust predictive approach for canonical correlation analysis
title_full A robust predictive approach for canonical correlation analysis
title_fullStr A robust predictive approach for canonical correlation analysis
title_full_unstemmed A robust predictive approach for canonical correlation analysis
title_sort A robust predictive approach for canonical correlation analysis
dc.creator.none.fl_str_mv Adrover, Jorge Gabriel
Donato, Stella Maris
author Adrover, Jorge Gabriel
author_facet Adrover, Jorge Gabriel
Donato, Stella Maris
author_role author
author2 Donato, Stella Maris
author2_role author
dc.subject.none.fl_str_mv CANONICAL CORRELATION ANALYSIS
M-SCALES
MEAN RELATIVE PREDICTION ERROR
S-ESTIMATION
topic CANONICAL CORRELATION ANALYSIS
M-SCALES
MEAN RELATIVE PREDICTION ERROR
S-ESTIMATION
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Canonical correlation analysis (CCA) is a dimension-reduction technique in which two random vectors from high dimensional spaces are reduced to a new pair of low dimensional vectors after applying linear transformations to each of them, retaining as much information as possible. The components of the transformed vectors are called canonical variables. One seeks linear combinations of the original vectors maximizing the correlation subject to the constraint that they are to be uncorrelated with the previous canonical variables within each vector. By these means one actually gets two transformed random vectors of lower dimension whose expected square distance has been minimized subject to have uncorrelated components of unit variance within each vector. Since the closeness between the two transformed vectors is evaluated through a highly sensitive measure to outlying observations as the mean square loss, the linear transformations we are seeking are also affected. In this paper we use a robust univariate dispersion measure (like an M-scale) based on the distance of the transformed vectors to derive robust S-estimators for canonical vectors and correlations. An iterative algorithm is performed by exploiting the existence of efficient algorithms for S-estimation in the context of Principal Component Analysis. Some convergence properties are analyzed for the iterative algorithm. A simulation study is conducted to compare the new procedure with some other robust competitors available in the literature, showing a remarkable performance. We also prove that the proposal is Fisher consistent.
Fil: Adrover, Jorge Gabriel. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Fil: Donato, Stella Maris. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina
description Canonical correlation analysis (CCA) is a dimension-reduction technique in which two random vectors from high dimensional spaces are reduced to a new pair of low dimensional vectors after applying linear transformations to each of them, retaining as much information as possible. The components of the transformed vectors are called canonical variables. One seeks linear combinations of the original vectors maximizing the correlation subject to the constraint that they are to be uncorrelated with the previous canonical variables within each vector. By these means one actually gets two transformed random vectors of lower dimension whose expected square distance has been minimized subject to have uncorrelated components of unit variance within each vector. Since the closeness between the two transformed vectors is evaluated through a highly sensitive measure to outlying observations as the mean square loss, the linear transformations we are seeking are also affected. In this paper we use a robust univariate dispersion measure (like an M-scale) based on the distance of the transformed vectors to derive robust S-estimators for canonical vectors and correlations. An iterative algorithm is performed by exploiting the existence of efficient algorithms for S-estimation in the context of Principal Component Analysis. Some convergence properties are analyzed for the iterative algorithm. A simulation study is conducted to compare the new procedure with some other robust competitors available in the literature, showing a remarkable performance. We also prove that the proposal is Fisher consistent.
publishDate 2015
dc.date.none.fl_str_mv 2015-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/113184
Adrover, Jorge Gabriel; Donato, Stella Maris; A robust predictive approach for canonical correlation analysis; Elsevier Inc; Journal Of Multivariate Analysis; 133; 1-2015; 356-376
0047-259X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/113184
identifier_str_mv Adrover, Jorge Gabriel; Donato, Stella Maris; A robust predictive approach for canonical correlation analysis; Elsevier Inc; Journal Of Multivariate Analysis; 133; 1-2015; 356-376
0047-259X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0047259X14002048
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmva.2014.09.007
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Inc
publisher.none.fl_str_mv Elsevier Inc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842980263351549952
score 12.993085