A robust predictive approach for canonical correlation analysis
- Autores
- Adrover, Jorge Gabriel; Donato, Stella Maris
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Canonical correlation analysis (CCA) is a dimension-reduction technique in which two random vectors from high dimensional spaces are reduced to a new pair of low dimensional vectors after applying linear transformations to each of them, retaining as much information as possible. The components of the transformed vectors are called canonical variables. One seeks linear combinations of the original vectors maximizing the correlation subject to the constraint that they are to be uncorrelated with the previous canonical variables within each vector. By these means one actually gets two transformed random vectors of lower dimension whose expected square distance has been minimized subject to have uncorrelated components of unit variance within each vector. Since the closeness between the two transformed vectors is evaluated through a highly sensitive measure to outlying observations as the mean square loss, the linear transformations we are seeking are also affected. In this paper we use a robust univariate dispersion measure (like an M-scale) based on the distance of the transformed vectors to derive robust S-estimators for canonical vectors and correlations. An iterative algorithm is performed by exploiting the existence of efficient algorithms for S-estimation in the context of Principal Component Analysis. Some convergence properties are analyzed for the iterative algorithm. A simulation study is conducted to compare the new procedure with some other robust competitors available in the literature, showing a remarkable performance. We also prove that the proposal is Fisher consistent.
Fil: Adrover, Jorge Gabriel. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Fil: Donato, Stella Maris. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina - Materia
-
CANONICAL CORRELATION ANALYSIS
M-SCALES
MEAN RELATIVE PREDICTION ERROR
S-ESTIMATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/113184
Ver los metadatos del registro completo
id |
CONICETDig_42a048ca9620b3bacaf7cf2024ab6ce3 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/113184 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A robust predictive approach for canonical correlation analysisAdrover, Jorge GabrielDonato, Stella MarisCANONICAL CORRELATION ANALYSISM-SCALESMEAN RELATIVE PREDICTION ERRORS-ESTIMATIONhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Canonical correlation analysis (CCA) is a dimension-reduction technique in which two random vectors from high dimensional spaces are reduced to a new pair of low dimensional vectors after applying linear transformations to each of them, retaining as much information as possible. The components of the transformed vectors are called canonical variables. One seeks linear combinations of the original vectors maximizing the correlation subject to the constraint that they are to be uncorrelated with the previous canonical variables within each vector. By these means one actually gets two transformed random vectors of lower dimension whose expected square distance has been minimized subject to have uncorrelated components of unit variance within each vector. Since the closeness between the two transformed vectors is evaluated through a highly sensitive measure to outlying observations as the mean square loss, the linear transformations we are seeking are also affected. In this paper we use a robust univariate dispersion measure (like an M-scale) based on the distance of the transformed vectors to derive robust S-estimators for canonical vectors and correlations. An iterative algorithm is performed by exploiting the existence of efficient algorithms for S-estimation in the context of Principal Component Analysis. Some convergence properties are analyzed for the iterative algorithm. A simulation study is conducted to compare the new procedure with some other robust competitors available in the literature, showing a remarkable performance. We also prove that the proposal is Fisher consistent.Fil: Adrover, Jorge Gabriel. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaFil: Donato, Stella Maris. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; ArgentinaElsevier Inc2015-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/113184Adrover, Jorge Gabriel; Donato, Stella Maris; A robust predictive approach for canonical correlation analysis; Elsevier Inc; Journal Of Multivariate Analysis; 133; 1-2015; 356-3760047-259XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0047259X14002048info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmva.2014.09.007info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:06:23Zoai:ri.conicet.gov.ar:11336/113184instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:06:23.749CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A robust predictive approach for canonical correlation analysis |
title |
A robust predictive approach for canonical correlation analysis |
spellingShingle |
A robust predictive approach for canonical correlation analysis Adrover, Jorge Gabriel CANONICAL CORRELATION ANALYSIS M-SCALES MEAN RELATIVE PREDICTION ERROR S-ESTIMATION |
title_short |
A robust predictive approach for canonical correlation analysis |
title_full |
A robust predictive approach for canonical correlation analysis |
title_fullStr |
A robust predictive approach for canonical correlation analysis |
title_full_unstemmed |
A robust predictive approach for canonical correlation analysis |
title_sort |
A robust predictive approach for canonical correlation analysis |
dc.creator.none.fl_str_mv |
Adrover, Jorge Gabriel Donato, Stella Maris |
author |
Adrover, Jorge Gabriel |
author_facet |
Adrover, Jorge Gabriel Donato, Stella Maris |
author_role |
author |
author2 |
Donato, Stella Maris |
author2_role |
author |
dc.subject.none.fl_str_mv |
CANONICAL CORRELATION ANALYSIS M-SCALES MEAN RELATIVE PREDICTION ERROR S-ESTIMATION |
topic |
CANONICAL CORRELATION ANALYSIS M-SCALES MEAN RELATIVE PREDICTION ERROR S-ESTIMATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Canonical correlation analysis (CCA) is a dimension-reduction technique in which two random vectors from high dimensional spaces are reduced to a new pair of low dimensional vectors after applying linear transformations to each of them, retaining as much information as possible. The components of the transformed vectors are called canonical variables. One seeks linear combinations of the original vectors maximizing the correlation subject to the constraint that they are to be uncorrelated with the previous canonical variables within each vector. By these means one actually gets two transformed random vectors of lower dimension whose expected square distance has been minimized subject to have uncorrelated components of unit variance within each vector. Since the closeness between the two transformed vectors is evaluated through a highly sensitive measure to outlying observations as the mean square loss, the linear transformations we are seeking are also affected. In this paper we use a robust univariate dispersion measure (like an M-scale) based on the distance of the transformed vectors to derive robust S-estimators for canonical vectors and correlations. An iterative algorithm is performed by exploiting the existence of efficient algorithms for S-estimation in the context of Principal Component Analysis. Some convergence properties are analyzed for the iterative algorithm. A simulation study is conducted to compare the new procedure with some other robust competitors available in the literature, showing a remarkable performance. We also prove that the proposal is Fisher consistent. Fil: Adrover, Jorge Gabriel. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina Fil: Donato, Stella Maris. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina |
description |
Canonical correlation analysis (CCA) is a dimension-reduction technique in which two random vectors from high dimensional spaces are reduced to a new pair of low dimensional vectors after applying linear transformations to each of them, retaining as much information as possible. The components of the transformed vectors are called canonical variables. One seeks linear combinations of the original vectors maximizing the correlation subject to the constraint that they are to be uncorrelated with the previous canonical variables within each vector. By these means one actually gets two transformed random vectors of lower dimension whose expected square distance has been minimized subject to have uncorrelated components of unit variance within each vector. Since the closeness between the two transformed vectors is evaluated through a highly sensitive measure to outlying observations as the mean square loss, the linear transformations we are seeking are also affected. In this paper we use a robust univariate dispersion measure (like an M-scale) based on the distance of the transformed vectors to derive robust S-estimators for canonical vectors and correlations. An iterative algorithm is performed by exploiting the existence of efficient algorithms for S-estimation in the context of Principal Component Analysis. Some convergence properties are analyzed for the iterative algorithm. A simulation study is conducted to compare the new procedure with some other robust competitors available in the literature, showing a remarkable performance. We also prove that the proposal is Fisher consistent. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/113184 Adrover, Jorge Gabriel; Donato, Stella Maris; A robust predictive approach for canonical correlation analysis; Elsevier Inc; Journal Of Multivariate Analysis; 133; 1-2015; 356-376 0047-259X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/113184 |
identifier_str_mv |
Adrover, Jorge Gabriel; Donato, Stella Maris; A robust predictive approach for canonical correlation analysis; Elsevier Inc; Journal Of Multivariate Analysis; 133; 1-2015; 356-376 0047-259X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0047259X14002048 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmva.2014.09.007 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Inc |
publisher.none.fl_str_mv |
Elsevier Inc |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980263351549952 |
score |
12.993085 |