Mecanismos de acción de nanopartículas de oro para terapia fotodinámica antimicrobiana
- Autores
- Silvero, María Jazmín; Rocca, Diamela María; Angel Villegas, Natalia; Becerra, María Cecilia
- Año de publicación
- 2019
- Idioma
- español castellano
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- La terapia fotodinámica se presenta, en los últimos años, como una alternativa eficaz al uso de antibióticos convencionales. Particularmente, nuestro grupo ha demostrado que diferentes nanopartículas de oro logran, tras pocos minutos de irradiación, la muerte de bacterias de distintas cepas aeróbicas patogénicas como {Escherichia coli, Staphyloccocus aureus y Pseudomona aeruginosa} (1) La detección de EROs y la localización de las nanopartículas en la membrana bacteriana y/o en el interior de las células bacterianas nos permitieron asumir que el estrés oxidativo juega un rol fundamental en el mecanismo de acción. El objetivo de este trabajo fue estudiar si la producción de EROs era la única causa de la muerte bacteriana producida por nanopartículas de oro funcionalizadas (y sintetizadas) con amoxicilina: "amoxi@AuNPs"Por un lado se realizó una curva de muerte en la misma cepa de {S. aureus } inhibida anteriormente por las amoxi@AuNPs, pero esta vez se agregó además ácido ascórbico. Por otro lado, se realizaron curvas de muerte de cepas anaerobias {Staphyloccocus mitis, Staphyloccocus mutans y Lactobacillus } tratadas con las amoxi@AuNPs en microaerofilia. Se estudió la producción de EROs mediante la sonda 2?, 7 dihidro-dicloro-fluoresceina en estas condiciones de deficiencia de oxígeno, y a la mitad del tiempo requerido para la muerte bacteriana.Se observó que las amoxi@AuNPs tienen un efecto bactericida en {S. aureus } luego de sólo 30 minutos de irradiación, aún en presencia del antioxidante. A su vez, estas nanopartículas mostraron inhibición total de las cepas anaerobias (dentro de jarra de anaerobiosis) luego de sólo 30 minutos. No se detectaron EROs en estas cepas durante el tratamiento fotodinámico. Ambos hallazgos indican que las amoxi@AuNPs, al ser irradiadas, producirían la muerte bacteriana a través de más de un mecanismo. Ya que en estudios anteriores se observó producción de EROs pero en los presentados aquí se demuestra que no es necesaria la generación de un estrés oxidativo para alcanzar el daño celular. Que se encuentre más de un mecanismo de acción para estas nanopartículas puede deberse a la polidispersidad en formas y tamaños, lo cual hasta el momento pareciera ser una ventaja. Cabe aclarar que la amoxicilina solo actúa como molécula estabilizadora de las nanopartículas y guía hacia la pared bacteriana, como se ha demostrado anteriormente. Se proyecta realizar TEM de estas últimas cepas anaerobias para comprobar si el daño es a nivel estructural, posiblemente por el efecto foto-térmico, ya que se conoce que la temperatura de las nanopartículas en la superficie puede sobrepasar los 1000 grados.
Fil: Silvero, María Jazmín. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Farmacia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Argentina
Fil: Rocca, Diamela María. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Farmacia; Argentina
Fil: Angel Villegas, Natalia. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Farmacia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Unidad de Investigación y Desarrollo en Tecnología Farmacéutica. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Unidad de Investigación y Desarrollo en Tecnología Farmacéutica; Argentina
Fil: Becerra, María Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Argentina
XV Congreso Argentino de Microbiología; V Congreso Argentino de Microbiología de Alimentos; V Congreso Latinoamericano de Microbiología de Medicamentos y Cosméticos y XIV Congreso Argentino de Microbiología General
Ciudad Autónoma de Buenos Aires
Argentina
Asociación Argentina de Microbiologia - Materia
-
NANOMATERIALES
NANOPARTICULAS
MECANISMO
ESPECIES REACTIVAS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/131048
Ver los metadatos del registro completo
id |
CONICETDig_5bb806d9055ad578ae0aafd4dd245ef7 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/131048 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Mecanismos de acción de nanopartículas de oro para terapia fotodinámica antimicrobianaSilvero, María JazmínRocca, Diamela MaríaAngel Villegas, NataliaBecerra, María CeciliaNANOMATERIALESNANOPARTICULASMECANISMOESPECIES REACTIVAShttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1La terapia fotodinámica se presenta, en los últimos años, como una alternativa eficaz al uso de antibióticos convencionales. Particularmente, nuestro grupo ha demostrado que diferentes nanopartículas de oro logran, tras pocos minutos de irradiación, la muerte de bacterias de distintas cepas aeróbicas patogénicas como {Escherichia coli, Staphyloccocus aureus y Pseudomona aeruginosa} (1) La detección de EROs y la localización de las nanopartículas en la membrana bacteriana y/o en el interior de las células bacterianas nos permitieron asumir que el estrés oxidativo juega un rol fundamental en el mecanismo de acción. El objetivo de este trabajo fue estudiar si la producción de EROs era la única causa de la muerte bacteriana producida por nanopartículas de oro funcionalizadas (y sintetizadas) con amoxicilina: "amoxi@AuNPs"Por un lado se realizó una curva de muerte en la misma cepa de {S. aureus } inhibida anteriormente por las amoxi@AuNPs, pero esta vez se agregó además ácido ascórbico. Por otro lado, se realizaron curvas de muerte de cepas anaerobias {Staphyloccocus mitis, Staphyloccocus mutans y Lactobacillus } tratadas con las amoxi@AuNPs en microaerofilia. Se estudió la producción de EROs mediante la sonda 2?, 7 dihidro-dicloro-fluoresceina en estas condiciones de deficiencia de oxígeno, y a la mitad del tiempo requerido para la muerte bacteriana.Se observó que las amoxi@AuNPs tienen un efecto bactericida en {S. aureus } luego de sólo 30 minutos de irradiación, aún en presencia del antioxidante. A su vez, estas nanopartículas mostraron inhibición total de las cepas anaerobias (dentro de jarra de anaerobiosis) luego de sólo 30 minutos. No se detectaron EROs en estas cepas durante el tratamiento fotodinámico. Ambos hallazgos indican que las amoxi@AuNPs, al ser irradiadas, producirían la muerte bacteriana a través de más de un mecanismo. Ya que en estudios anteriores se observó producción de EROs pero en los presentados aquí se demuestra que no es necesaria la generación de un estrés oxidativo para alcanzar el daño celular. Que se encuentre más de un mecanismo de acción para estas nanopartículas puede deberse a la polidispersidad en formas y tamaños, lo cual hasta el momento pareciera ser una ventaja. Cabe aclarar que la amoxicilina solo actúa como molécula estabilizadora de las nanopartículas y guía hacia la pared bacteriana, como se ha demostrado anteriormente. Se proyecta realizar TEM de estas últimas cepas anaerobias para comprobar si el daño es a nivel estructural, posiblemente por el efecto foto-térmico, ya que se conoce que la temperatura de las nanopartículas en la superficie puede sobrepasar los 1000 grados.Fil: Silvero, María Jazmín. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Farmacia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Rocca, Diamela María. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Farmacia; ArgentinaFil: Angel Villegas, Natalia. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Farmacia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Unidad de Investigación y Desarrollo en Tecnología Farmacéutica. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Unidad de Investigación y Desarrollo en Tecnología Farmacéutica; ArgentinaFil: Becerra, María Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaXV Congreso Argentino de Microbiología; V Congreso Argentino de Microbiología de Alimentos; V Congreso Latinoamericano de Microbiología de Medicamentos y Cosméticos y XIV Congreso Argentino de Microbiología GeneralCiudad Autónoma de Buenos AiresArgentinaAsociación Argentina de MicrobiologiaAsociación Argentina de Microbiología2019info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectCongresoBookhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/131048Mecanismos de acción de nanopartículas de oro para terapia fotodinámica antimicrobiana; XV Congreso Argentino de Microbiología; V Congreso Argentino de Microbiología de Alimentos; V Congreso Latinoamericano de Microbiología de Medicamentos y Cosméticos y XIV Congreso Argentino de Microbiología General; Ciudad Autónoma de Buenos Aires; Argentina; 2019; 83-83978-987-46701-5-1CONICET DigitalCONICETspainfo:eu-repo/semantics/altIdentifier/url/https://aam.org.ar/microbiologia2019/archivos/LibrodeResumenesCAM%202019.pdfNacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:53:03Zoai:ri.conicet.gov.ar:11336/131048instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:53:03.723CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Mecanismos de acción de nanopartículas de oro para terapia fotodinámica antimicrobiana |
title |
Mecanismos de acción de nanopartículas de oro para terapia fotodinámica antimicrobiana |
spellingShingle |
Mecanismos de acción de nanopartículas de oro para terapia fotodinámica antimicrobiana Silvero, María Jazmín NANOMATERIALES NANOPARTICULAS MECANISMO ESPECIES REACTIVAS |
title_short |
Mecanismos de acción de nanopartículas de oro para terapia fotodinámica antimicrobiana |
title_full |
Mecanismos de acción de nanopartículas de oro para terapia fotodinámica antimicrobiana |
title_fullStr |
Mecanismos de acción de nanopartículas de oro para terapia fotodinámica antimicrobiana |
title_full_unstemmed |
Mecanismos de acción de nanopartículas de oro para terapia fotodinámica antimicrobiana |
title_sort |
Mecanismos de acción de nanopartículas de oro para terapia fotodinámica antimicrobiana |
dc.creator.none.fl_str_mv |
Silvero, María Jazmín Rocca, Diamela María Angel Villegas, Natalia Becerra, María Cecilia |
author |
Silvero, María Jazmín |
author_facet |
Silvero, María Jazmín Rocca, Diamela María Angel Villegas, Natalia Becerra, María Cecilia |
author_role |
author |
author2 |
Rocca, Diamela María Angel Villegas, Natalia Becerra, María Cecilia |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
NANOMATERIALES NANOPARTICULAS MECANISMO ESPECIES REACTIVAS |
topic |
NANOMATERIALES NANOPARTICULAS MECANISMO ESPECIES REACTIVAS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
La terapia fotodinámica se presenta, en los últimos años, como una alternativa eficaz al uso de antibióticos convencionales. Particularmente, nuestro grupo ha demostrado que diferentes nanopartículas de oro logran, tras pocos minutos de irradiación, la muerte de bacterias de distintas cepas aeróbicas patogénicas como {Escherichia coli, Staphyloccocus aureus y Pseudomona aeruginosa} (1) La detección de EROs y la localización de las nanopartículas en la membrana bacteriana y/o en el interior de las células bacterianas nos permitieron asumir que el estrés oxidativo juega un rol fundamental en el mecanismo de acción. El objetivo de este trabajo fue estudiar si la producción de EROs era la única causa de la muerte bacteriana producida por nanopartículas de oro funcionalizadas (y sintetizadas) con amoxicilina: "amoxi@AuNPs"Por un lado se realizó una curva de muerte en la misma cepa de {S. aureus } inhibida anteriormente por las amoxi@AuNPs, pero esta vez se agregó además ácido ascórbico. Por otro lado, se realizaron curvas de muerte de cepas anaerobias {Staphyloccocus mitis, Staphyloccocus mutans y Lactobacillus } tratadas con las amoxi@AuNPs en microaerofilia. Se estudió la producción de EROs mediante la sonda 2?, 7 dihidro-dicloro-fluoresceina en estas condiciones de deficiencia de oxígeno, y a la mitad del tiempo requerido para la muerte bacteriana.Se observó que las amoxi@AuNPs tienen un efecto bactericida en {S. aureus } luego de sólo 30 minutos de irradiación, aún en presencia del antioxidante. A su vez, estas nanopartículas mostraron inhibición total de las cepas anaerobias (dentro de jarra de anaerobiosis) luego de sólo 30 minutos. No se detectaron EROs en estas cepas durante el tratamiento fotodinámico. Ambos hallazgos indican que las amoxi@AuNPs, al ser irradiadas, producirían la muerte bacteriana a través de más de un mecanismo. Ya que en estudios anteriores se observó producción de EROs pero en los presentados aquí se demuestra que no es necesaria la generación de un estrés oxidativo para alcanzar el daño celular. Que se encuentre más de un mecanismo de acción para estas nanopartículas puede deberse a la polidispersidad en formas y tamaños, lo cual hasta el momento pareciera ser una ventaja. Cabe aclarar que la amoxicilina solo actúa como molécula estabilizadora de las nanopartículas y guía hacia la pared bacteriana, como se ha demostrado anteriormente. Se proyecta realizar TEM de estas últimas cepas anaerobias para comprobar si el daño es a nivel estructural, posiblemente por el efecto foto-térmico, ya que se conoce que la temperatura de las nanopartículas en la superficie puede sobrepasar los 1000 grados. Fil: Silvero, María Jazmín. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Farmacia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Argentina Fil: Rocca, Diamela María. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Farmacia; Argentina Fil: Angel Villegas, Natalia. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Farmacia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Unidad de Investigación y Desarrollo en Tecnología Farmacéutica. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Unidad de Investigación y Desarrollo en Tecnología Farmacéutica; Argentina Fil: Becerra, María Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Argentina XV Congreso Argentino de Microbiología; V Congreso Argentino de Microbiología de Alimentos; V Congreso Latinoamericano de Microbiología de Medicamentos y Cosméticos y XIV Congreso Argentino de Microbiología General Ciudad Autónoma de Buenos Aires Argentina Asociación Argentina de Microbiologia |
description |
La terapia fotodinámica se presenta, en los últimos años, como una alternativa eficaz al uso de antibióticos convencionales. Particularmente, nuestro grupo ha demostrado que diferentes nanopartículas de oro logran, tras pocos minutos de irradiación, la muerte de bacterias de distintas cepas aeróbicas patogénicas como {Escherichia coli, Staphyloccocus aureus y Pseudomona aeruginosa} (1) La detección de EROs y la localización de las nanopartículas en la membrana bacteriana y/o en el interior de las células bacterianas nos permitieron asumir que el estrés oxidativo juega un rol fundamental en el mecanismo de acción. El objetivo de este trabajo fue estudiar si la producción de EROs era la única causa de la muerte bacteriana producida por nanopartículas de oro funcionalizadas (y sintetizadas) con amoxicilina: "amoxi@AuNPs"Por un lado se realizó una curva de muerte en la misma cepa de {S. aureus } inhibida anteriormente por las amoxi@AuNPs, pero esta vez se agregó además ácido ascórbico. Por otro lado, se realizaron curvas de muerte de cepas anaerobias {Staphyloccocus mitis, Staphyloccocus mutans y Lactobacillus } tratadas con las amoxi@AuNPs en microaerofilia. Se estudió la producción de EROs mediante la sonda 2?, 7 dihidro-dicloro-fluoresceina en estas condiciones de deficiencia de oxígeno, y a la mitad del tiempo requerido para la muerte bacteriana.Se observó que las amoxi@AuNPs tienen un efecto bactericida en {S. aureus } luego de sólo 30 minutos de irradiación, aún en presencia del antioxidante. A su vez, estas nanopartículas mostraron inhibición total de las cepas anaerobias (dentro de jarra de anaerobiosis) luego de sólo 30 minutos. No se detectaron EROs en estas cepas durante el tratamiento fotodinámico. Ambos hallazgos indican que las amoxi@AuNPs, al ser irradiadas, producirían la muerte bacteriana a través de más de un mecanismo. Ya que en estudios anteriores se observó producción de EROs pero en los presentados aquí se demuestra que no es necesaria la generación de un estrés oxidativo para alcanzar el daño celular. Que se encuentre más de un mecanismo de acción para estas nanopartículas puede deberse a la polidispersidad en formas y tamaños, lo cual hasta el momento pareciera ser una ventaja. Cabe aclarar que la amoxicilina solo actúa como molécula estabilizadora de las nanopartículas y guía hacia la pared bacteriana, como se ha demostrado anteriormente. Se proyecta realizar TEM de estas últimas cepas anaerobias para comprobar si el daño es a nivel estructural, posiblemente por el efecto foto-térmico, ya que se conoce que la temperatura de las nanopartículas en la superficie puede sobrepasar los 1000 grados. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/conferenceObject Congreso Book http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
status_str |
publishedVersion |
format |
conferenceObject |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/131048 Mecanismos de acción de nanopartículas de oro para terapia fotodinámica antimicrobiana; XV Congreso Argentino de Microbiología; V Congreso Argentino de Microbiología de Alimentos; V Congreso Latinoamericano de Microbiología de Medicamentos y Cosméticos y XIV Congreso Argentino de Microbiología General; Ciudad Autónoma de Buenos Aires; Argentina; 2019; 83-83 978-987-46701-5-1 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/131048 |
identifier_str_mv |
Mecanismos de acción de nanopartículas de oro para terapia fotodinámica antimicrobiana; XV Congreso Argentino de Microbiología; V Congreso Argentino de Microbiología de Alimentos; V Congreso Latinoamericano de Microbiología de Medicamentos y Cosméticos y XIV Congreso Argentino de Microbiología General; Ciudad Autónoma de Buenos Aires; Argentina; 2019; 83-83 978-987-46701-5-1 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://aam.org.ar/microbiologia2019/archivos/LibrodeResumenesCAM%202019.pdf |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.coverage.none.fl_str_mv |
Nacional |
dc.publisher.none.fl_str_mv |
Asociación Argentina de Microbiología |
publisher.none.fl_str_mv |
Asociación Argentina de Microbiología |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269198750842880 |
score |
13.13397 |