Aquaporin Gating: A New Twist to Unravel Permeation through Water Channels
- Autores
- Ozu, Marcelo; Alvear Arias, Juan José; Fernandez, Miguel; Caviglia, Agustín; Peña Pichicoi, Antonio; Carrillo, Christian; Carmona, Emerson; Otero Gonzalez, Anselmo; Garate, José Antonio; Amodeo, Gabriela; Gonzalez, Carlos
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Aquaporins (AQPs) are small transmembrane tetrameric proteins that facilitate water, solute and gas exchange. Their presence has been extensively reported in the biological membranes of almost all living organisms. Although their discovery is much more recent than ion transport systems, different biophysical approaches have contributed to confirm that permeation through each monomer is consistent with closed and open states, introducing the term gating mechanism into the field. The study of AQPs in their native membrane or overexpressed in heterologous systems have experimentally demonstrated that water membrane permeability can be reversibly modified in response to specific modulators. For some regulation mechanisms, such as pH changes, evidence for gating is also supported by high-resolution structures of the water channel in different configurations as well as molecular dynamics simulation. Both experimental and simulation approaches sustain that the rearrangement of conserved residues contributes to occlude the cavity of the channel restricting water permeation. Interestingly, specific charged and conserved residues are present in the environment of the pore and, thus, the tetrameric structure can be subjected to alter the positions of these charges to sustain gating. Thus, is it possible to explore whether the displacement of these charges (gating current) leads to conformational changes? To our knowledge, this question has not yet been addressed at all. In this review, we intend to analyze the suitability of this proposal for the first time.
Fil: Ozu, Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Biodiversidad y Biología Experimental y Aplicada. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad y Biología Experimental y Aplicada; Argentina
Fil: Alvear Arias, Juan José. Universidad de Valparaíso; Chile
Fil: Fernandez, Miguel. Universidad de Valparaíso; Chile
Fil: Caviglia, Agustín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Biodiversidad y Biología Experimental y Aplicada. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad y Biología Experimental y Aplicada; Argentina
Fil: Peña Pichicoi, Antonio. Universidad de Valparaíso; Chile
Fil: Carrillo, Christian. Universidad de Valparaíso; Chile
Fil: Carmona, Emerson. No especifíca;
Fil: Otero Gonzalez, Anselmo. Universidad de La Habana; Cuba
Fil: Garate, José Antonio. Universidad de Valparaíso; Chile
Fil: Amodeo, Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Biodiversidad y Biología Experimental y Aplicada. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad y Biología Experimental y Aplicada; Argentina
Fil: Gonzalez, Carlos. Universidad de Valparaíso; Chile - Materia
-
AQP
AQUAPORIN
GATING MECHANISM
VOLTAGE SENSOR
WATER TRANSPORT - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/212911
Ver los metadatos del registro completo
id |
CONICETDig_5b2180993f12851d958f81a52c018bef |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/212911 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Aquaporin Gating: A New Twist to Unravel Permeation through Water ChannelsOzu, MarceloAlvear Arias, Juan JoséFernandez, MiguelCaviglia, AgustínPeña Pichicoi, AntonioCarrillo, ChristianCarmona, EmersonOtero Gonzalez, AnselmoGarate, José AntonioAmodeo, GabrielaGonzalez, CarlosAQPAQUAPORINGATING MECHANISMVOLTAGE SENSORWATER TRANSPORThttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Aquaporins (AQPs) are small transmembrane tetrameric proteins that facilitate water, solute and gas exchange. Their presence has been extensively reported in the biological membranes of almost all living organisms. Although their discovery is much more recent than ion transport systems, different biophysical approaches have contributed to confirm that permeation through each monomer is consistent with closed and open states, introducing the term gating mechanism into the field. The study of AQPs in their native membrane or overexpressed in heterologous systems have experimentally demonstrated that water membrane permeability can be reversibly modified in response to specific modulators. For some regulation mechanisms, such as pH changes, evidence for gating is also supported by high-resolution structures of the water channel in different configurations as well as molecular dynamics simulation. Both experimental and simulation approaches sustain that the rearrangement of conserved residues contributes to occlude the cavity of the channel restricting water permeation. Interestingly, specific charged and conserved residues are present in the environment of the pore and, thus, the tetrameric structure can be subjected to alter the positions of these charges to sustain gating. Thus, is it possible to explore whether the displacement of these charges (gating current) leads to conformational changes? To our knowledge, this question has not yet been addressed at all. In this review, we intend to analyze the suitability of this proposal for the first time.Fil: Ozu, Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Biodiversidad y Biología Experimental y Aplicada. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad y Biología Experimental y Aplicada; ArgentinaFil: Alvear Arias, Juan José. Universidad de Valparaíso; ChileFil: Fernandez, Miguel. Universidad de Valparaíso; ChileFil: Caviglia, Agustín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Biodiversidad y Biología Experimental y Aplicada. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad y Biología Experimental y Aplicada; ArgentinaFil: Peña Pichicoi, Antonio. Universidad de Valparaíso; ChileFil: Carrillo, Christian. Universidad de Valparaíso; ChileFil: Carmona, Emerson. No especifíca;Fil: Otero Gonzalez, Anselmo. Universidad de La Habana; CubaFil: Garate, José Antonio. Universidad de Valparaíso; ChileFil: Amodeo, Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Biodiversidad y Biología Experimental y Aplicada. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad y Biología Experimental y Aplicada; ArgentinaFil: Gonzalez, Carlos. Universidad de Valparaíso; ChileMolecular Diversity Preservation International2022-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/212911Ozu, Marcelo; Alvear Arias, Juan José; Fernandez, Miguel; Caviglia, Agustín; Peña Pichicoi, Antonio; et al.; Aquaporin Gating: A New Twist to Unravel Permeation through Water Channels; Molecular Diversity Preservation International; International Journal of Molecular Sciences; 23; 20; 10-2022; 1-291422-0067CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.3390/ijms232012317info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:12:44Zoai:ri.conicet.gov.ar:11336/212911instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:12:45.193CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Aquaporin Gating: A New Twist to Unravel Permeation through Water Channels |
title |
Aquaporin Gating: A New Twist to Unravel Permeation through Water Channels |
spellingShingle |
Aquaporin Gating: A New Twist to Unravel Permeation through Water Channels Ozu, Marcelo AQP AQUAPORIN GATING MECHANISM VOLTAGE SENSOR WATER TRANSPORT |
title_short |
Aquaporin Gating: A New Twist to Unravel Permeation through Water Channels |
title_full |
Aquaporin Gating: A New Twist to Unravel Permeation through Water Channels |
title_fullStr |
Aquaporin Gating: A New Twist to Unravel Permeation through Water Channels |
title_full_unstemmed |
Aquaporin Gating: A New Twist to Unravel Permeation through Water Channels |
title_sort |
Aquaporin Gating: A New Twist to Unravel Permeation through Water Channels |
dc.creator.none.fl_str_mv |
Ozu, Marcelo Alvear Arias, Juan José Fernandez, Miguel Caviglia, Agustín Peña Pichicoi, Antonio Carrillo, Christian Carmona, Emerson Otero Gonzalez, Anselmo Garate, José Antonio Amodeo, Gabriela Gonzalez, Carlos |
author |
Ozu, Marcelo |
author_facet |
Ozu, Marcelo Alvear Arias, Juan José Fernandez, Miguel Caviglia, Agustín Peña Pichicoi, Antonio Carrillo, Christian Carmona, Emerson Otero Gonzalez, Anselmo Garate, José Antonio Amodeo, Gabriela Gonzalez, Carlos |
author_role |
author |
author2 |
Alvear Arias, Juan José Fernandez, Miguel Caviglia, Agustín Peña Pichicoi, Antonio Carrillo, Christian Carmona, Emerson Otero Gonzalez, Anselmo Garate, José Antonio Amodeo, Gabriela Gonzalez, Carlos |
author2_role |
author author author author author author author author author author |
dc.subject.none.fl_str_mv |
AQP AQUAPORIN GATING MECHANISM VOLTAGE SENSOR WATER TRANSPORT |
topic |
AQP AQUAPORIN GATING MECHANISM VOLTAGE SENSOR WATER TRANSPORT |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Aquaporins (AQPs) are small transmembrane tetrameric proteins that facilitate water, solute and gas exchange. Their presence has been extensively reported in the biological membranes of almost all living organisms. Although their discovery is much more recent than ion transport systems, different biophysical approaches have contributed to confirm that permeation through each monomer is consistent with closed and open states, introducing the term gating mechanism into the field. The study of AQPs in their native membrane or overexpressed in heterologous systems have experimentally demonstrated that water membrane permeability can be reversibly modified in response to specific modulators. For some regulation mechanisms, such as pH changes, evidence for gating is also supported by high-resolution structures of the water channel in different configurations as well as molecular dynamics simulation. Both experimental and simulation approaches sustain that the rearrangement of conserved residues contributes to occlude the cavity of the channel restricting water permeation. Interestingly, specific charged and conserved residues are present in the environment of the pore and, thus, the tetrameric structure can be subjected to alter the positions of these charges to sustain gating. Thus, is it possible to explore whether the displacement of these charges (gating current) leads to conformational changes? To our knowledge, this question has not yet been addressed at all. In this review, we intend to analyze the suitability of this proposal for the first time. Fil: Ozu, Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Biodiversidad y Biología Experimental y Aplicada. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad y Biología Experimental y Aplicada; Argentina Fil: Alvear Arias, Juan José. Universidad de Valparaíso; Chile Fil: Fernandez, Miguel. Universidad de Valparaíso; Chile Fil: Caviglia, Agustín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Biodiversidad y Biología Experimental y Aplicada. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad y Biología Experimental y Aplicada; Argentina Fil: Peña Pichicoi, Antonio. Universidad de Valparaíso; Chile Fil: Carrillo, Christian. Universidad de Valparaíso; Chile Fil: Carmona, Emerson. No especifíca; Fil: Otero Gonzalez, Anselmo. Universidad de La Habana; Cuba Fil: Garate, José Antonio. Universidad de Valparaíso; Chile Fil: Amodeo, Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Biodiversidad y Biología Experimental y Aplicada. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad y Biología Experimental y Aplicada; Argentina Fil: Gonzalez, Carlos. Universidad de Valparaíso; Chile |
description |
Aquaporins (AQPs) are small transmembrane tetrameric proteins that facilitate water, solute and gas exchange. Their presence has been extensively reported in the biological membranes of almost all living organisms. Although their discovery is much more recent than ion transport systems, different biophysical approaches have contributed to confirm that permeation through each monomer is consistent with closed and open states, introducing the term gating mechanism into the field. The study of AQPs in their native membrane or overexpressed in heterologous systems have experimentally demonstrated that water membrane permeability can be reversibly modified in response to specific modulators. For some regulation mechanisms, such as pH changes, evidence for gating is also supported by high-resolution structures of the water channel in different configurations as well as molecular dynamics simulation. Both experimental and simulation approaches sustain that the rearrangement of conserved residues contributes to occlude the cavity of the channel restricting water permeation. Interestingly, specific charged and conserved residues are present in the environment of the pore and, thus, the tetrameric structure can be subjected to alter the positions of these charges to sustain gating. Thus, is it possible to explore whether the displacement of these charges (gating current) leads to conformational changes? To our knowledge, this question has not yet been addressed at all. In this review, we intend to analyze the suitability of this proposal for the first time. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/212911 Ozu, Marcelo; Alvear Arias, Juan José; Fernandez, Miguel; Caviglia, Agustín; Peña Pichicoi, Antonio; et al.; Aquaporin Gating: A New Twist to Unravel Permeation through Water Channels; Molecular Diversity Preservation International; International Journal of Molecular Sciences; 23; 20; 10-2022; 1-29 1422-0067 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/212911 |
identifier_str_mv |
Ozu, Marcelo; Alvear Arias, Juan José; Fernandez, Miguel; Caviglia, Agustín; Peña Pichicoi, Antonio; et al.; Aquaporin Gating: A New Twist to Unravel Permeation through Water Channels; Molecular Diversity Preservation International; International Journal of Molecular Sciences; 23; 20; 10-2022; 1-29 1422-0067 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.3390/ijms232012317 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Molecular Diversity Preservation International |
publisher.none.fl_str_mv |
Molecular Diversity Preservation International |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614036537212928 |
score |
13.070432 |