A data-driven scheduling approach to smart manufacturing
- Autores
- Rossit, Daniel Alejandro; Tohmé, Fernando Abel; Frutos, Mariano
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Traditional methods of scheduling are mostly based on the use of pieces of information directly related to the performance of schedules, as for instance processing times, delivery dates, etc., assuming that the production system is operating normally. In the case of malfunctions, the literature concentrates on the ensuing corrective operations, like scheduling with machine breakdowns or under remanufacturing considerations. These event-driven approaches are mainly used in dynamic scheduling or rescheduling systems. Unlike those, Smart Manufacturing and Industry 4.0 production environments integrate the physical and decision-making aspects of manufacturing processes in order to achieve their decentralization and autonomy. On these grounds we propose a data-driven architecture for scheduling, in which the system has real time access to data. Then, scheduling decisions can be made ahead of time, on the basis of more information. This promising approach is based on the architecture of cyber-physical systems, with a data-driven engine that uses, in particular, Big Data techniques to extract vital information for Industry 4.0 systems.
Fil: Rossit, Daniel Alejandro. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
Fil: Tohmé, Fernando Abel. Universidad Nacional del Sur. Departamento de Economía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
Fil: Frutos, Mariano. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Económicas y Sociales del Sur. Universidad Nacional del Sur. Departamento de Economía. Instituto de Investigaciones Económicas y Sociales del Sur; Argentina - Materia
-
BIG DATA
CYBER-PHYSICAL SYSTEMS
DATA DRIVEN
DECISION-MAKING
INDUSTRY 4.0
SCHEDULING
SMART MANUFACTURING - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/94722
Ver los metadatos del registro completo
id |
CONICETDig_ba8978919fef899e30dcd64aed8a8750 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/94722 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A data-driven scheduling approach to smart manufacturingRossit, Daniel AlejandroTohmé, Fernando AbelFrutos, MarianoBIG DATACYBER-PHYSICAL SYSTEMSDATA DRIVENDECISION-MAKINGINDUSTRY 4.0SCHEDULINGSMART MANUFACTURINGhttps://purl.org/becyt/ford/2.11https://purl.org/becyt/ford/2Traditional methods of scheduling are mostly based on the use of pieces of information directly related to the performance of schedules, as for instance processing times, delivery dates, etc., assuming that the production system is operating normally. In the case of malfunctions, the literature concentrates on the ensuing corrective operations, like scheduling with machine breakdowns or under remanufacturing considerations. These event-driven approaches are mainly used in dynamic scheduling or rescheduling systems. Unlike those, Smart Manufacturing and Industry 4.0 production environments integrate the physical and decision-making aspects of manufacturing processes in order to achieve their decentralization and autonomy. On these grounds we propose a data-driven architecture for scheduling, in which the system has real time access to data. Then, scheduling decisions can be made ahead of time, on the basis of more information. This promising approach is based on the architecture of cyber-physical systems, with a data-driven engine that uses, in particular, Big Data techniques to extract vital information for Industry 4.0 systems.Fil: Rossit, Daniel Alejandro. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaFil: Tohmé, Fernando Abel. Universidad Nacional del Sur. Departamento de Economía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaFil: Frutos, Mariano. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Económicas y Sociales del Sur. Universidad Nacional del Sur. Departamento de Economía. Instituto de Investigaciones Económicas y Sociales del Sur; ArgentinaElsevier2019-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/94722Rossit, Daniel Alejandro; Tohmé, Fernando Abel; Frutos, Mariano; A data-driven scheduling approach to smart manufacturing; Elsevier; Journal of Industrial Information Integration; 15; 9-2019; 69-792452-414XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S2452414X18300475info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jii.2019.04.003info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:46:55Zoai:ri.conicet.gov.ar:11336/94722instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:46:55.582CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A data-driven scheduling approach to smart manufacturing |
title |
A data-driven scheduling approach to smart manufacturing |
spellingShingle |
A data-driven scheduling approach to smart manufacturing Rossit, Daniel Alejandro BIG DATA CYBER-PHYSICAL SYSTEMS DATA DRIVEN DECISION-MAKING INDUSTRY 4.0 SCHEDULING SMART MANUFACTURING |
title_short |
A data-driven scheduling approach to smart manufacturing |
title_full |
A data-driven scheduling approach to smart manufacturing |
title_fullStr |
A data-driven scheduling approach to smart manufacturing |
title_full_unstemmed |
A data-driven scheduling approach to smart manufacturing |
title_sort |
A data-driven scheduling approach to smart manufacturing |
dc.creator.none.fl_str_mv |
Rossit, Daniel Alejandro Tohmé, Fernando Abel Frutos, Mariano |
author |
Rossit, Daniel Alejandro |
author_facet |
Rossit, Daniel Alejandro Tohmé, Fernando Abel Frutos, Mariano |
author_role |
author |
author2 |
Tohmé, Fernando Abel Frutos, Mariano |
author2_role |
author author |
dc.subject.none.fl_str_mv |
BIG DATA CYBER-PHYSICAL SYSTEMS DATA DRIVEN DECISION-MAKING INDUSTRY 4.0 SCHEDULING SMART MANUFACTURING |
topic |
BIG DATA CYBER-PHYSICAL SYSTEMS DATA DRIVEN DECISION-MAKING INDUSTRY 4.0 SCHEDULING SMART MANUFACTURING |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.11 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Traditional methods of scheduling are mostly based on the use of pieces of information directly related to the performance of schedules, as for instance processing times, delivery dates, etc., assuming that the production system is operating normally. In the case of malfunctions, the literature concentrates on the ensuing corrective operations, like scheduling with machine breakdowns or under remanufacturing considerations. These event-driven approaches are mainly used in dynamic scheduling or rescheduling systems. Unlike those, Smart Manufacturing and Industry 4.0 production environments integrate the physical and decision-making aspects of manufacturing processes in order to achieve their decentralization and autonomy. On these grounds we propose a data-driven architecture for scheduling, in which the system has real time access to data. Then, scheduling decisions can be made ahead of time, on the basis of more information. This promising approach is based on the architecture of cyber-physical systems, with a data-driven engine that uses, in particular, Big Data techniques to extract vital information for Industry 4.0 systems. Fil: Rossit, Daniel Alejandro. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina Fil: Tohmé, Fernando Abel. Universidad Nacional del Sur. Departamento de Economía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina Fil: Frutos, Mariano. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Económicas y Sociales del Sur. Universidad Nacional del Sur. Departamento de Economía. Instituto de Investigaciones Económicas y Sociales del Sur; Argentina |
description |
Traditional methods of scheduling are mostly based on the use of pieces of information directly related to the performance of schedules, as for instance processing times, delivery dates, etc., assuming that the production system is operating normally. In the case of malfunctions, the literature concentrates on the ensuing corrective operations, like scheduling with machine breakdowns or under remanufacturing considerations. These event-driven approaches are mainly used in dynamic scheduling or rescheduling systems. Unlike those, Smart Manufacturing and Industry 4.0 production environments integrate the physical and decision-making aspects of manufacturing processes in order to achieve their decentralization and autonomy. On these grounds we propose a data-driven architecture for scheduling, in which the system has real time access to data. Then, scheduling decisions can be made ahead of time, on the basis of more information. This promising approach is based on the architecture of cyber-physical systems, with a data-driven engine that uses, in particular, Big Data techniques to extract vital information for Industry 4.0 systems. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/94722 Rossit, Daniel Alejandro; Tohmé, Fernando Abel; Frutos, Mariano; A data-driven scheduling approach to smart manufacturing; Elsevier; Journal of Industrial Information Integration; 15; 9-2019; 69-79 2452-414X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/94722 |
identifier_str_mv |
Rossit, Daniel Alejandro; Tohmé, Fernando Abel; Frutos, Mariano; A data-driven scheduling approach to smart manufacturing; Elsevier; Journal of Industrial Information Integration; 15; 9-2019; 69-79 2452-414X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S2452414X18300475 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jii.2019.04.003 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268825147408384 |
score |
13.13397 |