River flow in the near future: a global perspective in the context of a high-emission climate change scenario
- Autores
- Müller, Omar Vicente; McGuire, Patrick C.; Vidale, Pier Luigi; Hawkins, Ed
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- There is high confidence that global warming intensifies all components of the global water cycle. This work inves- tigates the possible effects of the global warming on river flows worldwide in the coming decades. We conducted 18 global hydrological simulations to assess how river flows are projected to change in the near future (2015-2050) compared to the re- cent past (1950-2014). The simulations are forced by runoff from HighResMIP-CMIP6 GCMs, which assume a high-emission scenario for the projections. The assessment includes estimating the signal-to-noise (S/N) ratio and the time of emergence (ToE) of all the rivers in the world. Consistent with the water cycle intensification, the hydrological simulations project a clear positive global river discharge trend from ∼2000, that emerges beyond the levels of natural variability and becomes ‘unfamil- iar’ by 2017 and ‘unusual’ by 2033. Simulations agree that the climate change signal is dominated by strong increases in flows of rivers originating in Central Africa and South Asia, and those discharging into the Arctic Ocean, partially compensated by the reduced flow projected for Patagonian rivers. The potential implications of such changes may include more frequent floods in Central African and South Asian rivers, driven by the projected magnification of the annual cycles with unprecedented peaks, a freshening of the Arctic Ocean from extra freshwater release, and limited water availability in Patagonia given the projected drier conditions of its rivers. This underscores the critical need for a paradigm shift in prioritizing water-related concerns, amidst the challenges of global warming.
Fil: Müller, Omar Vicente. Universidad Nacional del Litoral. Facultad de Ingenieria y Ciencias Hidricas. Centro de Estudios de Variabilidad y Cambio Climatico.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina
Fil: McGuire, Patrick C.. University Of Reading. Departament Of Meteorology; Reino Unido
Fil: Vidale, Pier Luigi. University Of Reading. Departament Of Meteorology; Reino Unido
Fil: Hawkins, Ed. University Of Reading. Departament Of Meteorology; Reino Unido - Materia
-
RIVER FLOW
SIGNAL-TO-NOISE RATIO
TIME OF EMERGENCE
CLIMATE CHANGE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/237064
Ver los metadatos del registro completo
id |
CONICETDig_59eb331847af81fe97bd78c747f7c767 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/237064 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
River flow in the near future: a global perspective in the context of a high-emission climate change scenarioMüller, Omar VicenteMcGuire, Patrick C.Vidale, Pier LuigiHawkins, EdRIVER FLOWSIGNAL-TO-NOISE RATIOTIME OF EMERGENCECLIMATE CHANGEhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1There is high confidence that global warming intensifies all components of the global water cycle. This work inves- tigates the possible effects of the global warming on river flows worldwide in the coming decades. We conducted 18 global hydrological simulations to assess how river flows are projected to change in the near future (2015-2050) compared to the re- cent past (1950-2014). The simulations are forced by runoff from HighResMIP-CMIP6 GCMs, which assume a high-emission scenario for the projections. The assessment includes estimating the signal-to-noise (S/N) ratio and the time of emergence (ToE) of all the rivers in the world. Consistent with the water cycle intensification, the hydrological simulations project a clear positive global river discharge trend from ∼2000, that emerges beyond the levels of natural variability and becomes ‘unfamil- iar’ by 2017 and ‘unusual’ by 2033. Simulations agree that the climate change signal is dominated by strong increases in flows of rivers originating in Central Africa and South Asia, and those discharging into the Arctic Ocean, partially compensated by the reduced flow projected for Patagonian rivers. The potential implications of such changes may include more frequent floods in Central African and South Asian rivers, driven by the projected magnification of the annual cycles with unprecedented peaks, a freshening of the Arctic Ocean from extra freshwater release, and limited water availability in Patagonia given the projected drier conditions of its rivers. This underscores the critical need for a paradigm shift in prioritizing water-related concerns, amidst the challenges of global warming.Fil: Müller, Omar Vicente. Universidad Nacional del Litoral. Facultad de Ingenieria y Ciencias Hidricas. Centro de Estudios de Variabilidad y Cambio Climatico.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; ArgentinaFil: McGuire, Patrick C.. University Of Reading. Departament Of Meteorology; Reino UnidoFil: Vidale, Pier Luigi. University Of Reading. Departament Of Meteorology; Reino UnidoFil: Hawkins, Ed. University Of Reading. Departament Of Meteorology; Reino UnidoCopernicus Publications2023-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/237064Müller, Omar Vicente; McGuire, Patrick C.; Vidale, Pier Luigi; Hawkins, Ed; River flow in the near future: a global perspective in the context of a high-emission climate change scenario; Copernicus Publications; Hydrology And Earth System Sciences; 7-2023; 1-251027-56061607-7938CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://egusphere.copernicus.org/preprints/2023/egusphere-2023-1281/info:eu-repo/semantics/altIdentifier/doi/10.5194/egusphere-2023-1281info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:35:29Zoai:ri.conicet.gov.ar:11336/237064instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:35:30.037CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
River flow in the near future: a global perspective in the context of a high-emission climate change scenario |
title |
River flow in the near future: a global perspective in the context of a high-emission climate change scenario |
spellingShingle |
River flow in the near future: a global perspective in the context of a high-emission climate change scenario Müller, Omar Vicente RIVER FLOW SIGNAL-TO-NOISE RATIO TIME OF EMERGENCE CLIMATE CHANGE |
title_short |
River flow in the near future: a global perspective in the context of a high-emission climate change scenario |
title_full |
River flow in the near future: a global perspective in the context of a high-emission climate change scenario |
title_fullStr |
River flow in the near future: a global perspective in the context of a high-emission climate change scenario |
title_full_unstemmed |
River flow in the near future: a global perspective in the context of a high-emission climate change scenario |
title_sort |
River flow in the near future: a global perspective in the context of a high-emission climate change scenario |
dc.creator.none.fl_str_mv |
Müller, Omar Vicente McGuire, Patrick C. Vidale, Pier Luigi Hawkins, Ed |
author |
Müller, Omar Vicente |
author_facet |
Müller, Omar Vicente McGuire, Patrick C. Vidale, Pier Luigi Hawkins, Ed |
author_role |
author |
author2 |
McGuire, Patrick C. Vidale, Pier Luigi Hawkins, Ed |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
RIVER FLOW SIGNAL-TO-NOISE RATIO TIME OF EMERGENCE CLIMATE CHANGE |
topic |
RIVER FLOW SIGNAL-TO-NOISE RATIO TIME OF EMERGENCE CLIMATE CHANGE |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
There is high confidence that global warming intensifies all components of the global water cycle. This work inves- tigates the possible effects of the global warming on river flows worldwide in the coming decades. We conducted 18 global hydrological simulations to assess how river flows are projected to change in the near future (2015-2050) compared to the re- cent past (1950-2014). The simulations are forced by runoff from HighResMIP-CMIP6 GCMs, which assume a high-emission scenario for the projections. The assessment includes estimating the signal-to-noise (S/N) ratio and the time of emergence (ToE) of all the rivers in the world. Consistent with the water cycle intensification, the hydrological simulations project a clear positive global river discharge trend from ∼2000, that emerges beyond the levels of natural variability and becomes ‘unfamil- iar’ by 2017 and ‘unusual’ by 2033. Simulations agree that the climate change signal is dominated by strong increases in flows of rivers originating in Central Africa and South Asia, and those discharging into the Arctic Ocean, partially compensated by the reduced flow projected for Patagonian rivers. The potential implications of such changes may include more frequent floods in Central African and South Asian rivers, driven by the projected magnification of the annual cycles with unprecedented peaks, a freshening of the Arctic Ocean from extra freshwater release, and limited water availability in Patagonia given the projected drier conditions of its rivers. This underscores the critical need for a paradigm shift in prioritizing water-related concerns, amidst the challenges of global warming. Fil: Müller, Omar Vicente. Universidad Nacional del Litoral. Facultad de Ingenieria y Ciencias Hidricas. Centro de Estudios de Variabilidad y Cambio Climatico.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina Fil: McGuire, Patrick C.. University Of Reading. Departament Of Meteorology; Reino Unido Fil: Vidale, Pier Luigi. University Of Reading. Departament Of Meteorology; Reino Unido Fil: Hawkins, Ed. University Of Reading. Departament Of Meteorology; Reino Unido |
description |
There is high confidence that global warming intensifies all components of the global water cycle. This work inves- tigates the possible effects of the global warming on river flows worldwide in the coming decades. We conducted 18 global hydrological simulations to assess how river flows are projected to change in the near future (2015-2050) compared to the re- cent past (1950-2014). The simulations are forced by runoff from HighResMIP-CMIP6 GCMs, which assume a high-emission scenario for the projections. The assessment includes estimating the signal-to-noise (S/N) ratio and the time of emergence (ToE) of all the rivers in the world. Consistent with the water cycle intensification, the hydrological simulations project a clear positive global river discharge trend from ∼2000, that emerges beyond the levels of natural variability and becomes ‘unfamil- iar’ by 2017 and ‘unusual’ by 2033. Simulations agree that the climate change signal is dominated by strong increases in flows of rivers originating in Central Africa and South Asia, and those discharging into the Arctic Ocean, partially compensated by the reduced flow projected for Patagonian rivers. The potential implications of such changes may include more frequent floods in Central African and South Asian rivers, driven by the projected magnification of the annual cycles with unprecedented peaks, a freshening of the Arctic Ocean from extra freshwater release, and limited water availability in Patagonia given the projected drier conditions of its rivers. This underscores the critical need for a paradigm shift in prioritizing water-related concerns, amidst the challenges of global warming. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/237064 Müller, Omar Vicente; McGuire, Patrick C.; Vidale, Pier Luigi; Hawkins, Ed; River flow in the near future: a global perspective in the context of a high-emission climate change scenario; Copernicus Publications; Hydrology And Earth System Sciences; 7-2023; 1-25 1027-5606 1607-7938 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/237064 |
identifier_str_mv |
Müller, Omar Vicente; McGuire, Patrick C.; Vidale, Pier Luigi; Hawkins, Ed; River flow in the near future: a global perspective in the context of a high-emission climate change scenario; Copernicus Publications; Hydrology And Earth System Sciences; 7-2023; 1-25 1027-5606 1607-7938 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://egusphere.copernicus.org/preprints/2023/egusphere-2023-1281/ info:eu-repo/semantics/altIdentifier/doi/10.5194/egusphere-2023-1281 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Copernicus Publications |
publisher.none.fl_str_mv |
Copernicus Publications |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613106260508672 |
score |
13.070432 |