Fluorescence Fluctuations and Equivalence Classes of Ca2+ Imaging Experiments
- Autores
- Piegari, Estefanía; Lopez, Lucía Fernanda; Perez Ipiña, Emiliano; Ponce Dawson, Silvina Martha
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Ca2z release into the cytosol through inositol 1,4,5-trisphosphate receptors (IP3Rs) plays a relevant role in numerous physiological processes. IP3R-mediated Ca2z signals involve Ca2z-induced Ca2z-release (CICR) whereby Ca2z release through one open IP3R induces the opening of other channels. IP3Rs are apparently organized in clusters. The signals can remain localized (i.e., Ca2z puffs) if CICR is limited to one cluster or become waves that propagate between clusters. Ca2z puffs are the building blocks of Ca2z waves. Thus, there is great interest in determining puff properties, especially in view of the current controversy on the spatial distribution of activatable IP3Rs. Ca2z puffs have been observed in intact cells with optical techniques proving that they are intrinsically stochastic. Obtaining a correct picture of their dynamics then entails being able to detect the whole range of puff sizes. Ca2z puffs are observed using visible single-wavelength Ca2z dyes, slow exogenous buffers (e.g., EGTA) to disrupt inter-cluster CICR and UV-photolyzable caged IP3. Single-wavelength dyes increase their fluorescence upon calcium binding producing images that are strongly dependent on their kinetic, transport and photophysical properties. Determining the artifacts that the imaging setting introduces is particularly relevant when trying to analyze the smallest Ca2z signals. In this paper we introduce a method to estimate the expected signal-to-noise ratio of Ca2z imaging experiments that use single-wavelength dyes. The method is based on the Number and Brightness technique. It involves the performance of a series of experiments and their subsequent analysis in terms of a fluorescence fluctuation model with which the model parameters are quantified. Using the model, the expected signal-to-noise ratio is then computed. Equivalence classes between different experimental conditions that produce images with similar signal-tonoise ratios can then be established. The method may also be used to estimate the smallest signals that can reliably be observed with each setting.
Fil: Piegari, Estefanía. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Lopez, Lucía Fernanda. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Perez Ipiña, Emiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Ponce Dawson, Silvina Martha. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina - Materia
-
Calcium signaling
Fluorescent dyes
Signal to noise ratio
Fluorescence imaging - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/17866
Ver los metadatos del registro completo
id |
CONICETDig_1adf4d922bd96929673116f97e846b5c |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/17866 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Fluorescence Fluctuations and Equivalence Classes of Ca2+ Imaging ExperimentsPiegari, EstefaníaLopez, Lucía FernandaPerez Ipiña, EmilianoPonce Dawson, Silvina MarthaCalcium signalingFluorescent dyesSignal to noise ratioFluorescence imaginghttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Ca2z release into the cytosol through inositol 1,4,5-trisphosphate receptors (IP3Rs) plays a relevant role in numerous physiological processes. IP3R-mediated Ca2z signals involve Ca2z-induced Ca2z-release (CICR) whereby Ca2z release through one open IP3R induces the opening of other channels. IP3Rs are apparently organized in clusters. The signals can remain localized (i.e., Ca2z puffs) if CICR is limited to one cluster or become waves that propagate between clusters. Ca2z puffs are the building blocks of Ca2z waves. Thus, there is great interest in determining puff properties, especially in view of the current controversy on the spatial distribution of activatable IP3Rs. Ca2z puffs have been observed in intact cells with optical techniques proving that they are intrinsically stochastic. Obtaining a correct picture of their dynamics then entails being able to detect the whole range of puff sizes. Ca2z puffs are observed using visible single-wavelength Ca2z dyes, slow exogenous buffers (e.g., EGTA) to disrupt inter-cluster CICR and UV-photolyzable caged IP3. Single-wavelength dyes increase their fluorescence upon calcium binding producing images that are strongly dependent on their kinetic, transport and photophysical properties. Determining the artifacts that the imaging setting introduces is particularly relevant when trying to analyze the smallest Ca2z signals. In this paper we introduce a method to estimate the expected signal-to-noise ratio of Ca2z imaging experiments that use single-wavelength dyes. The method is based on the Number and Brightness technique. It involves the performance of a series of experiments and their subsequent analysis in terms of a fluorescence fluctuation model with which the model parameters are quantified. Using the model, the expected signal-to-noise ratio is then computed. Equivalence classes between different experimental conditions that produce images with similar signal-tonoise ratios can then be established. The method may also be used to estimate the smallest signals that can reliably be observed with each setting.Fil: Piegari, Estefanía. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Lopez, Lucía Fernanda. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Perez Ipiña, Emiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Ponce Dawson, Silvina Martha. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaPublic Library Of Science2014-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/17866Piegari, Estefanía; Lopez, Lucía Fernanda; Perez Ipiña, Emiliano; Ponce Dawson, Silvina Martha; Fluorescence Fluctuations and Equivalence Classes of Ca2+ Imaging Experiments; Public Library Of Science; Plos One; 9; 4; 4-2014; 1-18; e958601932-6203enginfo:eu-repo/semantics/altIdentifier/url/http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0095860info:eu-repo/semantics/altIdentifier/doi/10.1371/journal.pone.0095860info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:21:04Zoai:ri.conicet.gov.ar:11336/17866instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:21:04.982CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Fluorescence Fluctuations and Equivalence Classes of Ca2+ Imaging Experiments |
title |
Fluorescence Fluctuations and Equivalence Classes of Ca2+ Imaging Experiments |
spellingShingle |
Fluorescence Fluctuations and Equivalence Classes of Ca2+ Imaging Experiments Piegari, Estefanía Calcium signaling Fluorescent dyes Signal to noise ratio Fluorescence imaging |
title_short |
Fluorescence Fluctuations and Equivalence Classes of Ca2+ Imaging Experiments |
title_full |
Fluorescence Fluctuations and Equivalence Classes of Ca2+ Imaging Experiments |
title_fullStr |
Fluorescence Fluctuations and Equivalence Classes of Ca2+ Imaging Experiments |
title_full_unstemmed |
Fluorescence Fluctuations and Equivalence Classes of Ca2+ Imaging Experiments |
title_sort |
Fluorescence Fluctuations and Equivalence Classes of Ca2+ Imaging Experiments |
dc.creator.none.fl_str_mv |
Piegari, Estefanía Lopez, Lucía Fernanda Perez Ipiña, Emiliano Ponce Dawson, Silvina Martha |
author |
Piegari, Estefanía |
author_facet |
Piegari, Estefanía Lopez, Lucía Fernanda Perez Ipiña, Emiliano Ponce Dawson, Silvina Martha |
author_role |
author |
author2 |
Lopez, Lucía Fernanda Perez Ipiña, Emiliano Ponce Dawson, Silvina Martha |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Calcium signaling Fluorescent dyes Signal to noise ratio Fluorescence imaging |
topic |
Calcium signaling Fluorescent dyes Signal to noise ratio Fluorescence imaging |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Ca2z release into the cytosol through inositol 1,4,5-trisphosphate receptors (IP3Rs) plays a relevant role in numerous physiological processes. IP3R-mediated Ca2z signals involve Ca2z-induced Ca2z-release (CICR) whereby Ca2z release through one open IP3R induces the opening of other channels. IP3Rs are apparently organized in clusters. The signals can remain localized (i.e., Ca2z puffs) if CICR is limited to one cluster or become waves that propagate between clusters. Ca2z puffs are the building blocks of Ca2z waves. Thus, there is great interest in determining puff properties, especially in view of the current controversy on the spatial distribution of activatable IP3Rs. Ca2z puffs have been observed in intact cells with optical techniques proving that they are intrinsically stochastic. Obtaining a correct picture of their dynamics then entails being able to detect the whole range of puff sizes. Ca2z puffs are observed using visible single-wavelength Ca2z dyes, slow exogenous buffers (e.g., EGTA) to disrupt inter-cluster CICR and UV-photolyzable caged IP3. Single-wavelength dyes increase their fluorescence upon calcium binding producing images that are strongly dependent on their kinetic, transport and photophysical properties. Determining the artifacts that the imaging setting introduces is particularly relevant when trying to analyze the smallest Ca2z signals. In this paper we introduce a method to estimate the expected signal-to-noise ratio of Ca2z imaging experiments that use single-wavelength dyes. The method is based on the Number and Brightness technique. It involves the performance of a series of experiments and their subsequent analysis in terms of a fluorescence fluctuation model with which the model parameters are quantified. Using the model, the expected signal-to-noise ratio is then computed. Equivalence classes between different experimental conditions that produce images with similar signal-tonoise ratios can then be established. The method may also be used to estimate the smallest signals that can reliably be observed with each setting. Fil: Piegari, Estefanía. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: Lopez, Lucía Fernanda. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: Perez Ipiña, Emiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: Ponce Dawson, Silvina Martha. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina |
description |
Ca2z release into the cytosol through inositol 1,4,5-trisphosphate receptors (IP3Rs) plays a relevant role in numerous physiological processes. IP3R-mediated Ca2z signals involve Ca2z-induced Ca2z-release (CICR) whereby Ca2z release through one open IP3R induces the opening of other channels. IP3Rs are apparently organized in clusters. The signals can remain localized (i.e., Ca2z puffs) if CICR is limited to one cluster or become waves that propagate between clusters. Ca2z puffs are the building blocks of Ca2z waves. Thus, there is great interest in determining puff properties, especially in view of the current controversy on the spatial distribution of activatable IP3Rs. Ca2z puffs have been observed in intact cells with optical techniques proving that they are intrinsically stochastic. Obtaining a correct picture of their dynamics then entails being able to detect the whole range of puff sizes. Ca2z puffs are observed using visible single-wavelength Ca2z dyes, slow exogenous buffers (e.g., EGTA) to disrupt inter-cluster CICR and UV-photolyzable caged IP3. Single-wavelength dyes increase their fluorescence upon calcium binding producing images that are strongly dependent on their kinetic, transport and photophysical properties. Determining the artifacts that the imaging setting introduces is particularly relevant when trying to analyze the smallest Ca2z signals. In this paper we introduce a method to estimate the expected signal-to-noise ratio of Ca2z imaging experiments that use single-wavelength dyes. The method is based on the Number and Brightness technique. It involves the performance of a series of experiments and their subsequent analysis in terms of a fluorescence fluctuation model with which the model parameters are quantified. Using the model, the expected signal-to-noise ratio is then computed. Equivalence classes between different experimental conditions that produce images with similar signal-tonoise ratios can then be established. The method may also be used to estimate the smallest signals that can reliably be observed with each setting. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/17866 Piegari, Estefanía; Lopez, Lucía Fernanda; Perez Ipiña, Emiliano; Ponce Dawson, Silvina Martha; Fluorescence Fluctuations and Equivalence Classes of Ca2+ Imaging Experiments; Public Library Of Science; Plos One; 9; 4; 4-2014; 1-18; e95860 1932-6203 |
url |
http://hdl.handle.net/11336/17866 |
identifier_str_mv |
Piegari, Estefanía; Lopez, Lucía Fernanda; Perez Ipiña, Emiliano; Ponce Dawson, Silvina Martha; Fluorescence Fluctuations and Equivalence Classes of Ca2+ Imaging Experiments; Public Library Of Science; Plos One; 9; 4; 4-2014; 1-18; e95860 1932-6203 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0095860 info:eu-repo/semantics/altIdentifier/doi/10.1371/journal.pone.0095860 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Public Library Of Science |
publisher.none.fl_str_mv |
Public Library Of Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614197230436352 |
score |
13.070432 |