Fluorescence Fluctuations and Equivalence Classes of Ca2+ Imaging Experiments

Autores
Piegari, Estefanía; Lopez, Lucía Fernanda; Perez Ipiña, Emiliano; Ponce Dawson, Silvina Martha
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Ca2z release into the cytosol through inositol 1,4,5-trisphosphate receptors (IP3Rs) plays a relevant role in numerous physiological processes. IP3R-mediated Ca2z signals involve Ca2z-induced Ca2z-release (CICR) whereby Ca2z release through one open IP3R induces the opening of other channels. IP3Rs are apparently organized in clusters. The signals can remain localized (i.e., Ca2z puffs) if CICR is limited to one cluster or become waves that propagate between clusters. Ca2z puffs are the building blocks of Ca2z waves. Thus, there is great interest in determining puff properties, especially in view of the current controversy on the spatial distribution of activatable IP3Rs. Ca2z puffs have been observed in intact cells with optical techniques proving that they are intrinsically stochastic. Obtaining a correct picture of their dynamics then entails being able to detect the whole range of puff sizes. Ca2z puffs are observed using visible single-wavelength Ca2z dyes, slow exogenous buffers (e.g., EGTA) to disrupt inter-cluster CICR and UV-photolyzable caged IP3. Single-wavelength dyes increase their fluorescence upon calcium binding producing images that are strongly dependent on their kinetic, transport and photophysical properties. Determining the artifacts that the imaging setting introduces is particularly relevant when trying to analyze the smallest Ca2z signals. In this paper we introduce a method to estimate the expected signal-to-noise ratio of Ca2z imaging experiments that use single-wavelength dyes. The method is based on the Number and Brightness technique. It involves the performance of a series of experiments and their subsequent analysis in terms of a fluorescence fluctuation model with which the model parameters are quantified. Using the model, the expected signal-to-noise ratio is then computed. Equivalence classes between different experimental conditions that produce images with similar signal-tonoise ratios can then be established. The method may also be used to estimate the smallest signals that can reliably be observed with each setting.
Fil: Piegari, Estefanía. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Lopez, Lucía Fernanda. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Perez Ipiña, Emiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Ponce Dawson, Silvina Martha. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Materia
Calcium signaling
Fluorescent dyes
Signal to noise ratio
Fluorescence imaging
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/17866

id CONICETDig_1adf4d922bd96929673116f97e846b5c
oai_identifier_str oai:ri.conicet.gov.ar:11336/17866
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Fluorescence Fluctuations and Equivalence Classes of Ca2+ Imaging ExperimentsPiegari, EstefaníaLopez, Lucía FernandaPerez Ipiña, EmilianoPonce Dawson, Silvina MarthaCalcium signalingFluorescent dyesSignal to noise ratioFluorescence imaginghttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Ca2z release into the cytosol through inositol 1,4,5-trisphosphate receptors (IP3Rs) plays a relevant role in numerous physiological processes. IP3R-mediated Ca2z signals involve Ca2z-induced Ca2z-release (CICR) whereby Ca2z release through one open IP3R induces the opening of other channels. IP3Rs are apparently organized in clusters. The signals can remain localized (i.e., Ca2z puffs) if CICR is limited to one cluster or become waves that propagate between clusters. Ca2z puffs are the building blocks of Ca2z waves. Thus, there is great interest in determining puff properties, especially in view of the current controversy on the spatial distribution of activatable IP3Rs. Ca2z puffs have been observed in intact cells with optical techniques proving that they are intrinsically stochastic. Obtaining a correct picture of their dynamics then entails being able to detect the whole range of puff sizes. Ca2z puffs are observed using visible single-wavelength Ca2z dyes, slow exogenous buffers (e.g., EGTA) to disrupt inter-cluster CICR and UV-photolyzable caged IP3. Single-wavelength dyes increase their fluorescence upon calcium binding producing images that are strongly dependent on their kinetic, transport and photophysical properties. Determining the artifacts that the imaging setting introduces is particularly relevant when trying to analyze the smallest Ca2z signals. In this paper we introduce a method to estimate the expected signal-to-noise ratio of Ca2z imaging experiments that use single-wavelength dyes. The method is based on the Number and Brightness technique. It involves the performance of a series of experiments and their subsequent analysis in terms of a fluorescence fluctuation model with which the model parameters are quantified. Using the model, the expected signal-to-noise ratio is then computed. Equivalence classes between different experimental conditions that produce images with similar signal-tonoise ratios can then be established. The method may also be used to estimate the smallest signals that can reliably be observed with each setting.Fil: Piegari, Estefanía. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Lopez, Lucía Fernanda. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Perez Ipiña, Emiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Ponce Dawson, Silvina Martha. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaPublic Library Of Science2014-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/17866Piegari, Estefanía; Lopez, Lucía Fernanda; Perez Ipiña, Emiliano; Ponce Dawson, Silvina Martha; Fluorescence Fluctuations and Equivalence Classes of Ca2+ Imaging Experiments; Public Library Of Science; Plos One; 9; 4; 4-2014; 1-18; e958601932-6203enginfo:eu-repo/semantics/altIdentifier/url/http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0095860info:eu-repo/semantics/altIdentifier/doi/10.1371/journal.pone.0095860info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:21:04Zoai:ri.conicet.gov.ar:11336/17866instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:21:04.982CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Fluorescence Fluctuations and Equivalence Classes of Ca2+ Imaging Experiments
title Fluorescence Fluctuations and Equivalence Classes of Ca2+ Imaging Experiments
spellingShingle Fluorescence Fluctuations and Equivalence Classes of Ca2+ Imaging Experiments
Piegari, Estefanía
Calcium signaling
Fluorescent dyes
Signal to noise ratio
Fluorescence imaging
title_short Fluorescence Fluctuations and Equivalence Classes of Ca2+ Imaging Experiments
title_full Fluorescence Fluctuations and Equivalence Classes of Ca2+ Imaging Experiments
title_fullStr Fluorescence Fluctuations and Equivalence Classes of Ca2+ Imaging Experiments
title_full_unstemmed Fluorescence Fluctuations and Equivalence Classes of Ca2+ Imaging Experiments
title_sort Fluorescence Fluctuations and Equivalence Classes of Ca2+ Imaging Experiments
dc.creator.none.fl_str_mv Piegari, Estefanía
Lopez, Lucía Fernanda
Perez Ipiña, Emiliano
Ponce Dawson, Silvina Martha
author Piegari, Estefanía
author_facet Piegari, Estefanía
Lopez, Lucía Fernanda
Perez Ipiña, Emiliano
Ponce Dawson, Silvina Martha
author_role author
author2 Lopez, Lucía Fernanda
Perez Ipiña, Emiliano
Ponce Dawson, Silvina Martha
author2_role author
author
author
dc.subject.none.fl_str_mv Calcium signaling
Fluorescent dyes
Signal to noise ratio
Fluorescence imaging
topic Calcium signaling
Fluorescent dyes
Signal to noise ratio
Fluorescence imaging
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Ca2z release into the cytosol through inositol 1,4,5-trisphosphate receptors (IP3Rs) plays a relevant role in numerous physiological processes. IP3R-mediated Ca2z signals involve Ca2z-induced Ca2z-release (CICR) whereby Ca2z release through one open IP3R induces the opening of other channels. IP3Rs are apparently organized in clusters. The signals can remain localized (i.e., Ca2z puffs) if CICR is limited to one cluster or become waves that propagate between clusters. Ca2z puffs are the building blocks of Ca2z waves. Thus, there is great interest in determining puff properties, especially in view of the current controversy on the spatial distribution of activatable IP3Rs. Ca2z puffs have been observed in intact cells with optical techniques proving that they are intrinsically stochastic. Obtaining a correct picture of their dynamics then entails being able to detect the whole range of puff sizes. Ca2z puffs are observed using visible single-wavelength Ca2z dyes, slow exogenous buffers (e.g., EGTA) to disrupt inter-cluster CICR and UV-photolyzable caged IP3. Single-wavelength dyes increase their fluorescence upon calcium binding producing images that are strongly dependent on their kinetic, transport and photophysical properties. Determining the artifacts that the imaging setting introduces is particularly relevant when trying to analyze the smallest Ca2z signals. In this paper we introduce a method to estimate the expected signal-to-noise ratio of Ca2z imaging experiments that use single-wavelength dyes. The method is based on the Number and Brightness technique. It involves the performance of a series of experiments and their subsequent analysis in terms of a fluorescence fluctuation model with which the model parameters are quantified. Using the model, the expected signal-to-noise ratio is then computed. Equivalence classes between different experimental conditions that produce images with similar signal-tonoise ratios can then be established. The method may also be used to estimate the smallest signals that can reliably be observed with each setting.
Fil: Piegari, Estefanía. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Lopez, Lucía Fernanda. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Perez Ipiña, Emiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Ponce Dawson, Silvina Martha. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
description Ca2z release into the cytosol through inositol 1,4,5-trisphosphate receptors (IP3Rs) plays a relevant role in numerous physiological processes. IP3R-mediated Ca2z signals involve Ca2z-induced Ca2z-release (CICR) whereby Ca2z release through one open IP3R induces the opening of other channels. IP3Rs are apparently organized in clusters. The signals can remain localized (i.e., Ca2z puffs) if CICR is limited to one cluster or become waves that propagate between clusters. Ca2z puffs are the building blocks of Ca2z waves. Thus, there is great interest in determining puff properties, especially in view of the current controversy on the spatial distribution of activatable IP3Rs. Ca2z puffs have been observed in intact cells with optical techniques proving that they are intrinsically stochastic. Obtaining a correct picture of their dynamics then entails being able to detect the whole range of puff sizes. Ca2z puffs are observed using visible single-wavelength Ca2z dyes, slow exogenous buffers (e.g., EGTA) to disrupt inter-cluster CICR and UV-photolyzable caged IP3. Single-wavelength dyes increase their fluorescence upon calcium binding producing images that are strongly dependent on their kinetic, transport and photophysical properties. Determining the artifacts that the imaging setting introduces is particularly relevant when trying to analyze the smallest Ca2z signals. In this paper we introduce a method to estimate the expected signal-to-noise ratio of Ca2z imaging experiments that use single-wavelength dyes. The method is based on the Number and Brightness technique. It involves the performance of a series of experiments and their subsequent analysis in terms of a fluorescence fluctuation model with which the model parameters are quantified. Using the model, the expected signal-to-noise ratio is then computed. Equivalence classes between different experimental conditions that produce images with similar signal-tonoise ratios can then be established. The method may also be used to estimate the smallest signals that can reliably be observed with each setting.
publishDate 2014
dc.date.none.fl_str_mv 2014-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/17866
Piegari, Estefanía; Lopez, Lucía Fernanda; Perez Ipiña, Emiliano; Ponce Dawson, Silvina Martha; Fluorescence Fluctuations and Equivalence Classes of Ca2+ Imaging Experiments; Public Library Of Science; Plos One; 9; 4; 4-2014; 1-18; e95860
1932-6203
url http://hdl.handle.net/11336/17866
identifier_str_mv Piegari, Estefanía; Lopez, Lucía Fernanda; Perez Ipiña, Emiliano; Ponce Dawson, Silvina Martha; Fluorescence Fluctuations and Equivalence Classes of Ca2+ Imaging Experiments; Public Library Of Science; Plos One; 9; 4; 4-2014; 1-18; e95860
1932-6203
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0095860
info:eu-repo/semantics/altIdentifier/doi/10.1371/journal.pone.0095860
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Public Library Of Science
publisher.none.fl_str_mv Public Library Of Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614197230436352
score 13.070432