Dielectric Breakdown in Chemical Vapor Deposited Hexagonal Boron Nitride
- Autores
- Jiang, Lanlan; Shi, Yuanyuan; Hui, Fei; Tang, Kechao; Wu, Qian; Pan, Chengbin; Jing, Xu; Uppal, Hasan; Palumbo, Félix Roberto Mario; Lu, Guangyuan; Wu, Tianru; Wang, Haomin; Villena, Marco A.; Xie, Xiaoming; McIntyre, Paul C.; Lanza, Mario
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Insulating films are essential in multiple electronic devices because they can provide essential functionalities, such as capacitance effects and electrical fields. Two-dimensional (2D) layered materials have superb electronic, physical, chemical, thermal, and optical properties, and they can be effectively used to provide additional performances, such as flexibility and transparency. 2D layered insulators are called to be essential in future electronic devices, but their reliability, degradation kinetics, and dielectric breakdown (BD) process are still not understood. In this work, the dielectric breakdown process of multilayer hexagonal boron nitride (h-BN) is analyzed on the nanoscale and on the device level, and the experimental results are studied via theoretical models. It is found that under electrical stress, local charge accumulation and charge trapping/detrapping are the onset mechanisms for dielectric BD formation. By means of conductive atomic force microscopy, the BD event was triggered at several locations on the surface of different dielectrics (SiO2, HfO2, Al2O3, multilayer h-BN, and monolayer h-BN); BD-induced hillocks rapidly appeared on the surface of all of them when the BD was reached, except in monolayer h-BN. The high thermal conductivity of h-BN combined with the one-atom-thick nature are genuine factors contributing to heat dissipation at the BD spot, which avoids self-accelerated and thermally driven catastrophic BD. These results point to monolayer h-BN as a sublime dielectric in terms of reliability, which may have important implications in future digital electronic devices.
Fil: Jiang, Lanlan. Soochow University; China
Fil: Shi, Yuanyuan. Soochow University; China. University of Stanford; Estados Unidos
Fil: Hui, Fei. Soochow University; China. Massachusetts Institute of Technology; Estados Unidos
Fil: Tang, Kechao. University of Stanford; Estados Unidos
Fil: Wu, Qian. Soochow University; China
Fil: Pan, Chengbin. Soochow University; China
Fil: Jing, Xu. Soochow University; China. University of Texas at Austin; Estados Unidos
Fil: Uppal, Hasan. University of Manchester; Reino Unido
Fil: Palumbo, Félix Roberto Mario. Comisión Nacional de Energía Atómica; Argentina. Universidad Tecnológica Nacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Lu, Guangyuan. Chinese Academy of Sciences; República de China
Fil: Wu, Tianru. Chinese Academy of Sciences; República de China
Fil: Wang, Haomin. Chinese Academy of Sciences; República de China
Fil: Villena, Marco A.. Soochow University; China
Fil: Xie, Xiaoming. Chinese Academy of Sciences; República de China. ShanghaiTech University; China
Fil: McIntyre, Paul C.. University of Stanford; Estados Unidos
Fil: Lanza, Mario. Soochow University; China - Materia
-
2D MATERIALS
CAFM
DIELECTRIC BREAKDOWN
HEXAGONAL BORON NITRIDE
INSULATOR - Nivel de accesibilidad
- acceso embargado
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/41414
Ver los metadatos del registro completo
id |
CONICETDig_596356ac15330bd8818ce5b29229f268 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/41414 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Dielectric Breakdown in Chemical Vapor Deposited Hexagonal Boron NitrideJiang, LanlanShi, YuanyuanHui, FeiTang, KechaoWu, QianPan, ChengbinJing, XuUppal, HasanPalumbo, Félix Roberto MarioLu, GuangyuanWu, TianruWang, HaominVillena, Marco A.Xie, XiaomingMcIntyre, Paul C.Lanza, Mario2D MATERIALSCAFMDIELECTRIC BREAKDOWNHEXAGONAL BORON NITRIDEINSULATORhttps://purl.org/becyt/ford/2.10https://purl.org/becyt/ford/2Insulating films are essential in multiple electronic devices because they can provide essential functionalities, such as capacitance effects and electrical fields. Two-dimensional (2D) layered materials have superb electronic, physical, chemical, thermal, and optical properties, and they can be effectively used to provide additional performances, such as flexibility and transparency. 2D layered insulators are called to be essential in future electronic devices, but their reliability, degradation kinetics, and dielectric breakdown (BD) process are still not understood. In this work, the dielectric breakdown process of multilayer hexagonal boron nitride (h-BN) is analyzed on the nanoscale and on the device level, and the experimental results are studied via theoretical models. It is found that under electrical stress, local charge accumulation and charge trapping/detrapping are the onset mechanisms for dielectric BD formation. By means of conductive atomic force microscopy, the BD event was triggered at several locations on the surface of different dielectrics (SiO2, HfO2, Al2O3, multilayer h-BN, and monolayer h-BN); BD-induced hillocks rapidly appeared on the surface of all of them when the BD was reached, except in monolayer h-BN. The high thermal conductivity of h-BN combined with the one-atom-thick nature are genuine factors contributing to heat dissipation at the BD spot, which avoids self-accelerated and thermally driven catastrophic BD. These results point to monolayer h-BN as a sublime dielectric in terms of reliability, which may have important implications in future digital electronic devices.Fil: Jiang, Lanlan. Soochow University; ChinaFil: Shi, Yuanyuan. Soochow University; China. University of Stanford; Estados UnidosFil: Hui, Fei. Soochow University; China. Massachusetts Institute of Technology; Estados UnidosFil: Tang, Kechao. University of Stanford; Estados UnidosFil: Wu, Qian. Soochow University; ChinaFil: Pan, Chengbin. Soochow University; ChinaFil: Jing, Xu. Soochow University; China. University of Texas at Austin; Estados UnidosFil: Uppal, Hasan. University of Manchester; Reino UnidoFil: Palumbo, Félix Roberto Mario. Comisión Nacional de Energía Atómica; Argentina. Universidad Tecnológica Nacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Lu, Guangyuan. Chinese Academy of Sciences; República de ChinaFil: Wu, Tianru. Chinese Academy of Sciences; República de ChinaFil: Wang, Haomin. Chinese Academy of Sciences; República de ChinaFil: Villena, Marco A.. Soochow University; ChinaFil: Xie, Xiaoming. Chinese Academy of Sciences; República de China. ShanghaiTech University; ChinaFil: McIntyre, Paul C.. University of Stanford; Estados UnidosFil: Lanza, Mario. Soochow University; ChinaAmerican Chemical Society2017-11info:eu-repo/date/embargoEnd/2018-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/41414Jiang, Lanlan; Shi, Yuanyuan; Hui, Fei; Tang, Kechao; Wu, Qian; et al.; Dielectric Breakdown in Chemical Vapor Deposited Hexagonal Boron Nitride; American Chemical Society; ACS Applied Materials & Interfaces; 9; 45; 11-2017; 39758-397701944-8244CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1021/acsami.7b10948info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acsami.7b10948info:eu-repo/semantics/embargoedAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:51:22Zoai:ri.conicet.gov.ar:11336/41414instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:51:22.545CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Dielectric Breakdown in Chemical Vapor Deposited Hexagonal Boron Nitride |
title |
Dielectric Breakdown in Chemical Vapor Deposited Hexagonal Boron Nitride |
spellingShingle |
Dielectric Breakdown in Chemical Vapor Deposited Hexagonal Boron Nitride Jiang, Lanlan 2D MATERIALS CAFM DIELECTRIC BREAKDOWN HEXAGONAL BORON NITRIDE INSULATOR |
title_short |
Dielectric Breakdown in Chemical Vapor Deposited Hexagonal Boron Nitride |
title_full |
Dielectric Breakdown in Chemical Vapor Deposited Hexagonal Boron Nitride |
title_fullStr |
Dielectric Breakdown in Chemical Vapor Deposited Hexagonal Boron Nitride |
title_full_unstemmed |
Dielectric Breakdown in Chemical Vapor Deposited Hexagonal Boron Nitride |
title_sort |
Dielectric Breakdown in Chemical Vapor Deposited Hexagonal Boron Nitride |
dc.creator.none.fl_str_mv |
Jiang, Lanlan Shi, Yuanyuan Hui, Fei Tang, Kechao Wu, Qian Pan, Chengbin Jing, Xu Uppal, Hasan Palumbo, Félix Roberto Mario Lu, Guangyuan Wu, Tianru Wang, Haomin Villena, Marco A. Xie, Xiaoming McIntyre, Paul C. Lanza, Mario |
author |
Jiang, Lanlan |
author_facet |
Jiang, Lanlan Shi, Yuanyuan Hui, Fei Tang, Kechao Wu, Qian Pan, Chengbin Jing, Xu Uppal, Hasan Palumbo, Félix Roberto Mario Lu, Guangyuan Wu, Tianru Wang, Haomin Villena, Marco A. Xie, Xiaoming McIntyre, Paul C. Lanza, Mario |
author_role |
author |
author2 |
Shi, Yuanyuan Hui, Fei Tang, Kechao Wu, Qian Pan, Chengbin Jing, Xu Uppal, Hasan Palumbo, Félix Roberto Mario Lu, Guangyuan Wu, Tianru Wang, Haomin Villena, Marco A. Xie, Xiaoming McIntyre, Paul C. Lanza, Mario |
author2_role |
author author author author author author author author author author author author author author author |
dc.subject.none.fl_str_mv |
2D MATERIALS CAFM DIELECTRIC BREAKDOWN HEXAGONAL BORON NITRIDE INSULATOR |
topic |
2D MATERIALS CAFM DIELECTRIC BREAKDOWN HEXAGONAL BORON NITRIDE INSULATOR |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.10 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Insulating films are essential in multiple electronic devices because they can provide essential functionalities, such as capacitance effects and electrical fields. Two-dimensional (2D) layered materials have superb electronic, physical, chemical, thermal, and optical properties, and they can be effectively used to provide additional performances, such as flexibility and transparency. 2D layered insulators are called to be essential in future electronic devices, but their reliability, degradation kinetics, and dielectric breakdown (BD) process are still not understood. In this work, the dielectric breakdown process of multilayer hexagonal boron nitride (h-BN) is analyzed on the nanoscale and on the device level, and the experimental results are studied via theoretical models. It is found that under electrical stress, local charge accumulation and charge trapping/detrapping are the onset mechanisms for dielectric BD formation. By means of conductive atomic force microscopy, the BD event was triggered at several locations on the surface of different dielectrics (SiO2, HfO2, Al2O3, multilayer h-BN, and monolayer h-BN); BD-induced hillocks rapidly appeared on the surface of all of them when the BD was reached, except in monolayer h-BN. The high thermal conductivity of h-BN combined with the one-atom-thick nature are genuine factors contributing to heat dissipation at the BD spot, which avoids self-accelerated and thermally driven catastrophic BD. These results point to monolayer h-BN as a sublime dielectric in terms of reliability, which may have important implications in future digital electronic devices. Fil: Jiang, Lanlan. Soochow University; China Fil: Shi, Yuanyuan. Soochow University; China. University of Stanford; Estados Unidos Fil: Hui, Fei. Soochow University; China. Massachusetts Institute of Technology; Estados Unidos Fil: Tang, Kechao. University of Stanford; Estados Unidos Fil: Wu, Qian. Soochow University; China Fil: Pan, Chengbin. Soochow University; China Fil: Jing, Xu. Soochow University; China. University of Texas at Austin; Estados Unidos Fil: Uppal, Hasan. University of Manchester; Reino Unido Fil: Palumbo, Félix Roberto Mario. Comisión Nacional de Energía Atómica; Argentina. Universidad Tecnológica Nacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Lu, Guangyuan. Chinese Academy of Sciences; República de China Fil: Wu, Tianru. Chinese Academy of Sciences; República de China Fil: Wang, Haomin. Chinese Academy of Sciences; República de China Fil: Villena, Marco A.. Soochow University; China Fil: Xie, Xiaoming. Chinese Academy of Sciences; República de China. ShanghaiTech University; China Fil: McIntyre, Paul C.. University of Stanford; Estados Unidos Fil: Lanza, Mario. Soochow University; China |
description |
Insulating films are essential in multiple electronic devices because they can provide essential functionalities, such as capacitance effects and electrical fields. Two-dimensional (2D) layered materials have superb electronic, physical, chemical, thermal, and optical properties, and they can be effectively used to provide additional performances, such as flexibility and transparency. 2D layered insulators are called to be essential in future electronic devices, but their reliability, degradation kinetics, and dielectric breakdown (BD) process are still not understood. In this work, the dielectric breakdown process of multilayer hexagonal boron nitride (h-BN) is analyzed on the nanoscale and on the device level, and the experimental results are studied via theoretical models. It is found that under electrical stress, local charge accumulation and charge trapping/detrapping are the onset mechanisms for dielectric BD formation. By means of conductive atomic force microscopy, the BD event was triggered at several locations on the surface of different dielectrics (SiO2, HfO2, Al2O3, multilayer h-BN, and monolayer h-BN); BD-induced hillocks rapidly appeared on the surface of all of them when the BD was reached, except in monolayer h-BN. The high thermal conductivity of h-BN combined with the one-atom-thick nature are genuine factors contributing to heat dissipation at the BD spot, which avoids self-accelerated and thermally driven catastrophic BD. These results point to monolayer h-BN as a sublime dielectric in terms of reliability, which may have important implications in future digital electronic devices. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-11 info:eu-repo/date/embargoEnd/2018-12-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/41414 Jiang, Lanlan; Shi, Yuanyuan; Hui, Fei; Tang, Kechao; Wu, Qian; et al.; Dielectric Breakdown in Chemical Vapor Deposited Hexagonal Boron Nitride; American Chemical Society; ACS Applied Materials & Interfaces; 9; 45; 11-2017; 39758-39770 1944-8244 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/41414 |
identifier_str_mv |
Jiang, Lanlan; Shi, Yuanyuan; Hui, Fei; Tang, Kechao; Wu, Qian; et al.; Dielectric Breakdown in Chemical Vapor Deposited Hexagonal Boron Nitride; American Chemical Society; ACS Applied Materials & Interfaces; 9; 45; 11-2017; 39758-39770 1944-8244 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1021/acsami.7b10948 info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acsami.7b10948 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/embargoedAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
embargoedAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Chemical Society |
publisher.none.fl_str_mv |
American Chemical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269091719544832 |
score |
13.13397 |