Dielectric Breakdown in Chemical Vapor Deposited Hexagonal Boron Nitride

Autores
Jiang, Lanlan; Shi, Yuanyuan; Hui, Fei; Tang, Kechao; Wu, Qian; Pan, Chengbin; Jing, Xu; Uppal, Hasan; Palumbo, Félix Roberto Mario; Lu, Guangyuan; Wu, Tianru; Wang, Haomin; Villena, Marco A.; Xie, Xiaoming; McIntyre, Paul C.; Lanza, Mario
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Insulating films are essential in multiple electronic devices because they can provide essential functionalities, such as capacitance effects and electrical fields. Two-dimensional (2D) layered materials have superb electronic, physical, chemical, thermal, and optical properties, and they can be effectively used to provide additional performances, such as flexibility and transparency. 2D layered insulators are called to be essential in future electronic devices, but their reliability, degradation kinetics, and dielectric breakdown (BD) process are still not understood. In this work, the dielectric breakdown process of multilayer hexagonal boron nitride (h-BN) is analyzed on the nanoscale and on the device level, and the experimental results are studied via theoretical models. It is found that under electrical stress, local charge accumulation and charge trapping/detrapping are the onset mechanisms for dielectric BD formation. By means of conductive atomic force microscopy, the BD event was triggered at several locations on the surface of different dielectrics (SiO2, HfO2, Al2O3, multilayer h-BN, and monolayer h-BN); BD-induced hillocks rapidly appeared on the surface of all of them when the BD was reached, except in monolayer h-BN. The high thermal conductivity of h-BN combined with the one-atom-thick nature are genuine factors contributing to heat dissipation at the BD spot, which avoids self-accelerated and thermally driven catastrophic BD. These results point to monolayer h-BN as a sublime dielectric in terms of reliability, which may have important implications in future digital electronic devices.
Fil: Jiang, Lanlan. Soochow University; China
Fil: Shi, Yuanyuan. Soochow University; China. University of Stanford; Estados Unidos
Fil: Hui, Fei. Soochow University; China. Massachusetts Institute of Technology; Estados Unidos
Fil: Tang, Kechao. University of Stanford; Estados Unidos
Fil: Wu, Qian. Soochow University; China
Fil: Pan, Chengbin. Soochow University; China
Fil: Jing, Xu. Soochow University; China. University of Texas at Austin; Estados Unidos
Fil: Uppal, Hasan. University of Manchester; Reino Unido
Fil: Palumbo, Félix Roberto Mario. Comisión Nacional de Energía Atómica; Argentina. Universidad Tecnológica Nacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Lu, Guangyuan. Chinese Academy of Sciences; República de China
Fil: Wu, Tianru. Chinese Academy of Sciences; República de China
Fil: Wang, Haomin. Chinese Academy of Sciences; República de China
Fil: Villena, Marco A.. Soochow University; China
Fil: Xie, Xiaoming. Chinese Academy of Sciences; República de China. ShanghaiTech University; China
Fil: McIntyre, Paul C.. University of Stanford; Estados Unidos
Fil: Lanza, Mario. Soochow University; China
Materia
2D MATERIALS
CAFM
DIELECTRIC BREAKDOWN
HEXAGONAL BORON NITRIDE
INSULATOR
Nivel de accesibilidad
acceso embargado
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/41414

id CONICETDig_596356ac15330bd8818ce5b29229f268
oai_identifier_str oai:ri.conicet.gov.ar:11336/41414
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Dielectric Breakdown in Chemical Vapor Deposited Hexagonal Boron NitrideJiang, LanlanShi, YuanyuanHui, FeiTang, KechaoWu, QianPan, ChengbinJing, XuUppal, HasanPalumbo, Félix Roberto MarioLu, GuangyuanWu, TianruWang, HaominVillena, Marco A.Xie, XiaomingMcIntyre, Paul C.Lanza, Mario2D MATERIALSCAFMDIELECTRIC BREAKDOWNHEXAGONAL BORON NITRIDEINSULATORhttps://purl.org/becyt/ford/2.10https://purl.org/becyt/ford/2Insulating films are essential in multiple electronic devices because they can provide essential functionalities, such as capacitance effects and electrical fields. Two-dimensional (2D) layered materials have superb electronic, physical, chemical, thermal, and optical properties, and they can be effectively used to provide additional performances, such as flexibility and transparency. 2D layered insulators are called to be essential in future electronic devices, but their reliability, degradation kinetics, and dielectric breakdown (BD) process are still not understood. In this work, the dielectric breakdown process of multilayer hexagonal boron nitride (h-BN) is analyzed on the nanoscale and on the device level, and the experimental results are studied via theoretical models. It is found that under electrical stress, local charge accumulation and charge trapping/detrapping are the onset mechanisms for dielectric BD formation. By means of conductive atomic force microscopy, the BD event was triggered at several locations on the surface of different dielectrics (SiO2, HfO2, Al2O3, multilayer h-BN, and monolayer h-BN); BD-induced hillocks rapidly appeared on the surface of all of them when the BD was reached, except in monolayer h-BN. The high thermal conductivity of h-BN combined with the one-atom-thick nature are genuine factors contributing to heat dissipation at the BD spot, which avoids self-accelerated and thermally driven catastrophic BD. These results point to monolayer h-BN as a sublime dielectric in terms of reliability, which may have important implications in future digital electronic devices.Fil: Jiang, Lanlan. Soochow University; ChinaFil: Shi, Yuanyuan. Soochow University; China. University of Stanford; Estados UnidosFil: Hui, Fei. Soochow University; China. Massachusetts Institute of Technology; Estados UnidosFil: Tang, Kechao. University of Stanford; Estados UnidosFil: Wu, Qian. Soochow University; ChinaFil: Pan, Chengbin. Soochow University; ChinaFil: Jing, Xu. Soochow University; China. University of Texas at Austin; Estados UnidosFil: Uppal, Hasan. University of Manchester; Reino UnidoFil: Palumbo, Félix Roberto Mario. Comisión Nacional de Energía Atómica; Argentina. Universidad Tecnológica Nacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Lu, Guangyuan. Chinese Academy of Sciences; República de ChinaFil: Wu, Tianru. Chinese Academy of Sciences; República de ChinaFil: Wang, Haomin. Chinese Academy of Sciences; República de ChinaFil: Villena, Marco A.. Soochow University; ChinaFil: Xie, Xiaoming. Chinese Academy of Sciences; República de China. ShanghaiTech University; ChinaFil: McIntyre, Paul C.. University of Stanford; Estados UnidosFil: Lanza, Mario. Soochow University; ChinaAmerican Chemical Society2017-11info:eu-repo/date/embargoEnd/2018-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/41414Jiang, Lanlan; Shi, Yuanyuan; Hui, Fei; Tang, Kechao; Wu, Qian; et al.; Dielectric Breakdown in Chemical Vapor Deposited Hexagonal Boron Nitride; American Chemical Society; ACS Applied Materials & Interfaces; 9; 45; 11-2017; 39758-397701944-8244CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1021/acsami.7b10948info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acsami.7b10948info:eu-repo/semantics/embargoedAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:51:22Zoai:ri.conicet.gov.ar:11336/41414instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:51:22.545CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Dielectric Breakdown in Chemical Vapor Deposited Hexagonal Boron Nitride
title Dielectric Breakdown in Chemical Vapor Deposited Hexagonal Boron Nitride
spellingShingle Dielectric Breakdown in Chemical Vapor Deposited Hexagonal Boron Nitride
Jiang, Lanlan
2D MATERIALS
CAFM
DIELECTRIC BREAKDOWN
HEXAGONAL BORON NITRIDE
INSULATOR
title_short Dielectric Breakdown in Chemical Vapor Deposited Hexagonal Boron Nitride
title_full Dielectric Breakdown in Chemical Vapor Deposited Hexagonal Boron Nitride
title_fullStr Dielectric Breakdown in Chemical Vapor Deposited Hexagonal Boron Nitride
title_full_unstemmed Dielectric Breakdown in Chemical Vapor Deposited Hexagonal Boron Nitride
title_sort Dielectric Breakdown in Chemical Vapor Deposited Hexagonal Boron Nitride
dc.creator.none.fl_str_mv Jiang, Lanlan
Shi, Yuanyuan
Hui, Fei
Tang, Kechao
Wu, Qian
Pan, Chengbin
Jing, Xu
Uppal, Hasan
Palumbo, Félix Roberto Mario
Lu, Guangyuan
Wu, Tianru
Wang, Haomin
Villena, Marco A.
Xie, Xiaoming
McIntyre, Paul C.
Lanza, Mario
author Jiang, Lanlan
author_facet Jiang, Lanlan
Shi, Yuanyuan
Hui, Fei
Tang, Kechao
Wu, Qian
Pan, Chengbin
Jing, Xu
Uppal, Hasan
Palumbo, Félix Roberto Mario
Lu, Guangyuan
Wu, Tianru
Wang, Haomin
Villena, Marco A.
Xie, Xiaoming
McIntyre, Paul C.
Lanza, Mario
author_role author
author2 Shi, Yuanyuan
Hui, Fei
Tang, Kechao
Wu, Qian
Pan, Chengbin
Jing, Xu
Uppal, Hasan
Palumbo, Félix Roberto Mario
Lu, Guangyuan
Wu, Tianru
Wang, Haomin
Villena, Marco A.
Xie, Xiaoming
McIntyre, Paul C.
Lanza, Mario
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv 2D MATERIALS
CAFM
DIELECTRIC BREAKDOWN
HEXAGONAL BORON NITRIDE
INSULATOR
topic 2D MATERIALS
CAFM
DIELECTRIC BREAKDOWN
HEXAGONAL BORON NITRIDE
INSULATOR
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.10
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Insulating films are essential in multiple electronic devices because they can provide essential functionalities, such as capacitance effects and electrical fields. Two-dimensional (2D) layered materials have superb electronic, physical, chemical, thermal, and optical properties, and they can be effectively used to provide additional performances, such as flexibility and transparency. 2D layered insulators are called to be essential in future electronic devices, but their reliability, degradation kinetics, and dielectric breakdown (BD) process are still not understood. In this work, the dielectric breakdown process of multilayer hexagonal boron nitride (h-BN) is analyzed on the nanoscale and on the device level, and the experimental results are studied via theoretical models. It is found that under electrical stress, local charge accumulation and charge trapping/detrapping are the onset mechanisms for dielectric BD formation. By means of conductive atomic force microscopy, the BD event was triggered at several locations on the surface of different dielectrics (SiO2, HfO2, Al2O3, multilayer h-BN, and monolayer h-BN); BD-induced hillocks rapidly appeared on the surface of all of them when the BD was reached, except in monolayer h-BN. The high thermal conductivity of h-BN combined with the one-atom-thick nature are genuine factors contributing to heat dissipation at the BD spot, which avoids self-accelerated and thermally driven catastrophic BD. These results point to monolayer h-BN as a sublime dielectric in terms of reliability, which may have important implications in future digital electronic devices.
Fil: Jiang, Lanlan. Soochow University; China
Fil: Shi, Yuanyuan. Soochow University; China. University of Stanford; Estados Unidos
Fil: Hui, Fei. Soochow University; China. Massachusetts Institute of Technology; Estados Unidos
Fil: Tang, Kechao. University of Stanford; Estados Unidos
Fil: Wu, Qian. Soochow University; China
Fil: Pan, Chengbin. Soochow University; China
Fil: Jing, Xu. Soochow University; China. University of Texas at Austin; Estados Unidos
Fil: Uppal, Hasan. University of Manchester; Reino Unido
Fil: Palumbo, Félix Roberto Mario. Comisión Nacional de Energía Atómica; Argentina. Universidad Tecnológica Nacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Lu, Guangyuan. Chinese Academy of Sciences; República de China
Fil: Wu, Tianru. Chinese Academy of Sciences; República de China
Fil: Wang, Haomin. Chinese Academy of Sciences; República de China
Fil: Villena, Marco A.. Soochow University; China
Fil: Xie, Xiaoming. Chinese Academy of Sciences; República de China. ShanghaiTech University; China
Fil: McIntyre, Paul C.. University of Stanford; Estados Unidos
Fil: Lanza, Mario. Soochow University; China
description Insulating films are essential in multiple electronic devices because they can provide essential functionalities, such as capacitance effects and electrical fields. Two-dimensional (2D) layered materials have superb electronic, physical, chemical, thermal, and optical properties, and they can be effectively used to provide additional performances, such as flexibility and transparency. 2D layered insulators are called to be essential in future electronic devices, but their reliability, degradation kinetics, and dielectric breakdown (BD) process are still not understood. In this work, the dielectric breakdown process of multilayer hexagonal boron nitride (h-BN) is analyzed on the nanoscale and on the device level, and the experimental results are studied via theoretical models. It is found that under electrical stress, local charge accumulation and charge trapping/detrapping are the onset mechanisms for dielectric BD formation. By means of conductive atomic force microscopy, the BD event was triggered at several locations on the surface of different dielectrics (SiO2, HfO2, Al2O3, multilayer h-BN, and monolayer h-BN); BD-induced hillocks rapidly appeared on the surface of all of them when the BD was reached, except in monolayer h-BN. The high thermal conductivity of h-BN combined with the one-atom-thick nature are genuine factors contributing to heat dissipation at the BD spot, which avoids self-accelerated and thermally driven catastrophic BD. These results point to monolayer h-BN as a sublime dielectric in terms of reliability, which may have important implications in future digital electronic devices.
publishDate 2017
dc.date.none.fl_str_mv 2017-11
info:eu-repo/date/embargoEnd/2018-12-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/41414
Jiang, Lanlan; Shi, Yuanyuan; Hui, Fei; Tang, Kechao; Wu, Qian; et al.; Dielectric Breakdown in Chemical Vapor Deposited Hexagonal Boron Nitride; American Chemical Society; ACS Applied Materials & Interfaces; 9; 45; 11-2017; 39758-39770
1944-8244
CONICET Digital
CONICET
url http://hdl.handle.net/11336/41414
identifier_str_mv Jiang, Lanlan; Shi, Yuanyuan; Hui, Fei; Tang, Kechao; Wu, Qian; et al.; Dielectric Breakdown in Chemical Vapor Deposited Hexagonal Boron Nitride; American Chemical Society; ACS Applied Materials & Interfaces; 9; 45; 11-2017; 39758-39770
1944-8244
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1021/acsami.7b10948
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acsami.7b10948
dc.rights.none.fl_str_mv info:eu-repo/semantics/embargoedAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv embargoedAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Chemical Society
publisher.none.fl_str_mv American Chemical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269091719544832
score 13.13397