Reticulate evolution in eukaryotes: Origin and evolution of the nitrate assimilation pathway
- Autores
- Ocaña Pallarès, Eduard; Najle, Sebastián Rodrigo; Scazzocchio, Claudio; Ruiz Trillo, Iñaki
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Genes and genomes can evolve through interchanging genetic material, this leading to reticular evolutionary patterns. However, the importance of reticulate evolution in eukaryotes, and in particular of horizontal gene transfer (HGT), remains controversial. Given that metabolic pathways with taxonomically-patchy distributions can be indicative of HGT events, the eukaryotic nitrate assimilation pathway is an ideal object of investigation, as previous results revealed a patchy distribution and suggested that the nitrate assimilation cluster of dikaryotic fungi (Opisthokonta) could have been originated and transferred from a lineage leading to Oomycota (Stramenopiles). We studied the origin and evolution of this pathway through both multi-scale bioinformatic and experimental approaches. Our taxonrich genomic screening shows that nitrate assimilation is present in more lineages than previously reported, although being restricted to autotrophs and osmotrophs. The phylogenies indicate a pervasive role of HGT, with three bacterial transfers contributing to the pathway origin, and at least seven well-supported transfers between eukaryotes. In particular, we propose a distinct and more complex HGT path between Opisthokonta and Stramenopiles than the one previously suggested, involving at least two transfers of a nitrate assimilation gene cluster. We also found that gene fusion played an essential role in this evolutionary history, underlying the origin of the canonical eukaryotic nitrate reductase, and of a chimeric nitrate reductase in Ichthyosporea (Opisthokonta). We show that the ichthyosporean pathway, including this novel nitrate reductase, is physiologically active and transcriptionally coregulated, responding to different nitrogen sources; similarly to distant eukaryotes with independent HGT-acquisitions of the pathway. This indicates that this pattern of transcriptional control evolved convergently in eukaryotes, favoring the proper integration of the pathway in the metabolic landscape. Our results highlight the importance of reticulate evolution in eukaryotes, by showing the crucial contribution of HGT and gene fusion in the evolutionary history of the nitrate assimilation pathway.
Fil: Ocaña Pallarès, Eduard. Universitat Pompeu Fabra; España. Consejo Superior de Investigaciones Científicas; España
Fil: Najle, Sebastián Rodrigo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; Argentina. Universitat Pompeu Fabra; España. Consejo Superior de Investigaciones Científicas; España
Fil: Scazzocchio, Claudio. Imperial College London; Reino Unido. Institute for Integrative Biology of the Cell; Francia
Fil: Ruiz Trillo, Iñaki. Universitat Pompeu Fabra; España. Consejo Superior de Investigaciones Científicas; España. Universidad de Barcelona; España. International Computer Room Experts Association; España - Materia
-
EUKARYOTIC EVOLUTION
HORIZONTAL GENE TRANSFER
NITRATE ASSIMILATION CLUSTER
ICHTHYSOPOREA - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/151486
Ver los metadatos del registro completo
id |
CONICETDig_593e9d841c14e715596b11fff5e4c336 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/151486 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Reticulate evolution in eukaryotes: Origin and evolution of the nitrate assimilation pathwayOcaña Pallarès, EduardNajle, Sebastián RodrigoScazzocchio, ClaudioRuiz Trillo, IñakiEUKARYOTIC EVOLUTIONHORIZONTAL GENE TRANSFERNITRATE ASSIMILATION CLUSTERICHTHYSOPOREAhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Genes and genomes can evolve through interchanging genetic material, this leading to reticular evolutionary patterns. However, the importance of reticulate evolution in eukaryotes, and in particular of horizontal gene transfer (HGT), remains controversial. Given that metabolic pathways with taxonomically-patchy distributions can be indicative of HGT events, the eukaryotic nitrate assimilation pathway is an ideal object of investigation, as previous results revealed a patchy distribution and suggested that the nitrate assimilation cluster of dikaryotic fungi (Opisthokonta) could have been originated and transferred from a lineage leading to Oomycota (Stramenopiles). We studied the origin and evolution of this pathway through both multi-scale bioinformatic and experimental approaches. Our taxonrich genomic screening shows that nitrate assimilation is present in more lineages than previously reported, although being restricted to autotrophs and osmotrophs. The phylogenies indicate a pervasive role of HGT, with three bacterial transfers contributing to the pathway origin, and at least seven well-supported transfers between eukaryotes. In particular, we propose a distinct and more complex HGT path between Opisthokonta and Stramenopiles than the one previously suggested, involving at least two transfers of a nitrate assimilation gene cluster. We also found that gene fusion played an essential role in this evolutionary history, underlying the origin of the canonical eukaryotic nitrate reductase, and of a chimeric nitrate reductase in Ichthyosporea (Opisthokonta). We show that the ichthyosporean pathway, including this novel nitrate reductase, is physiologically active and transcriptionally coregulated, responding to different nitrogen sources; similarly to distant eukaryotes with independent HGT-acquisitions of the pathway. This indicates that this pattern of transcriptional control evolved convergently in eukaryotes, favoring the proper integration of the pathway in the metabolic landscape. Our results highlight the importance of reticulate evolution in eukaryotes, by showing the crucial contribution of HGT and gene fusion in the evolutionary history of the nitrate assimilation pathway.Fil: Ocaña Pallarès, Eduard. Universitat Pompeu Fabra; España. Consejo Superior de Investigaciones Científicas; EspañaFil: Najle, Sebastián Rodrigo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; Argentina. Universitat Pompeu Fabra; España. Consejo Superior de Investigaciones Científicas; EspañaFil: Scazzocchio, Claudio. Imperial College London; Reino Unido. Institute for Integrative Biology of the Cell; FranciaFil: Ruiz Trillo, Iñaki. Universitat Pompeu Fabra; España. Consejo Superior de Investigaciones Científicas; España. Universidad de Barcelona; España. International Computer Room Experts Association; EspañaPublic Library of Science2019-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/151486Ocaña Pallarès, Eduard; Najle, Sebastián Rodrigo; Scazzocchio, Claudio; Ruiz Trillo, Iñaki; Reticulate evolution in eukaryotes: Origin and evolution of the nitrate assimilation pathway; Public Library of Science; Plos Genetics; 15; 2; 2-2019; 1-391553-7404CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://dx.plos.org/10.1371/journal.pgen.1007986info:eu-repo/semantics/altIdentifier/doi/10.1371/journal.pgen.1007986info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:10:58Zoai:ri.conicet.gov.ar:11336/151486instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:10:58.818CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Reticulate evolution in eukaryotes: Origin and evolution of the nitrate assimilation pathway |
title |
Reticulate evolution in eukaryotes: Origin and evolution of the nitrate assimilation pathway |
spellingShingle |
Reticulate evolution in eukaryotes: Origin and evolution of the nitrate assimilation pathway Ocaña Pallarès, Eduard EUKARYOTIC EVOLUTION HORIZONTAL GENE TRANSFER NITRATE ASSIMILATION CLUSTER ICHTHYSOPOREA |
title_short |
Reticulate evolution in eukaryotes: Origin and evolution of the nitrate assimilation pathway |
title_full |
Reticulate evolution in eukaryotes: Origin and evolution of the nitrate assimilation pathway |
title_fullStr |
Reticulate evolution in eukaryotes: Origin and evolution of the nitrate assimilation pathway |
title_full_unstemmed |
Reticulate evolution in eukaryotes: Origin and evolution of the nitrate assimilation pathway |
title_sort |
Reticulate evolution in eukaryotes: Origin and evolution of the nitrate assimilation pathway |
dc.creator.none.fl_str_mv |
Ocaña Pallarès, Eduard Najle, Sebastián Rodrigo Scazzocchio, Claudio Ruiz Trillo, Iñaki |
author |
Ocaña Pallarès, Eduard |
author_facet |
Ocaña Pallarès, Eduard Najle, Sebastián Rodrigo Scazzocchio, Claudio Ruiz Trillo, Iñaki |
author_role |
author |
author2 |
Najle, Sebastián Rodrigo Scazzocchio, Claudio Ruiz Trillo, Iñaki |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
EUKARYOTIC EVOLUTION HORIZONTAL GENE TRANSFER NITRATE ASSIMILATION CLUSTER ICHTHYSOPOREA |
topic |
EUKARYOTIC EVOLUTION HORIZONTAL GENE TRANSFER NITRATE ASSIMILATION CLUSTER ICHTHYSOPOREA |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Genes and genomes can evolve through interchanging genetic material, this leading to reticular evolutionary patterns. However, the importance of reticulate evolution in eukaryotes, and in particular of horizontal gene transfer (HGT), remains controversial. Given that metabolic pathways with taxonomically-patchy distributions can be indicative of HGT events, the eukaryotic nitrate assimilation pathway is an ideal object of investigation, as previous results revealed a patchy distribution and suggested that the nitrate assimilation cluster of dikaryotic fungi (Opisthokonta) could have been originated and transferred from a lineage leading to Oomycota (Stramenopiles). We studied the origin and evolution of this pathway through both multi-scale bioinformatic and experimental approaches. Our taxonrich genomic screening shows that nitrate assimilation is present in more lineages than previously reported, although being restricted to autotrophs and osmotrophs. The phylogenies indicate a pervasive role of HGT, with three bacterial transfers contributing to the pathway origin, and at least seven well-supported transfers between eukaryotes. In particular, we propose a distinct and more complex HGT path between Opisthokonta and Stramenopiles than the one previously suggested, involving at least two transfers of a nitrate assimilation gene cluster. We also found that gene fusion played an essential role in this evolutionary history, underlying the origin of the canonical eukaryotic nitrate reductase, and of a chimeric nitrate reductase in Ichthyosporea (Opisthokonta). We show that the ichthyosporean pathway, including this novel nitrate reductase, is physiologically active and transcriptionally coregulated, responding to different nitrogen sources; similarly to distant eukaryotes with independent HGT-acquisitions of the pathway. This indicates that this pattern of transcriptional control evolved convergently in eukaryotes, favoring the proper integration of the pathway in the metabolic landscape. Our results highlight the importance of reticulate evolution in eukaryotes, by showing the crucial contribution of HGT and gene fusion in the evolutionary history of the nitrate assimilation pathway. Fil: Ocaña Pallarès, Eduard. Universitat Pompeu Fabra; España. Consejo Superior de Investigaciones Científicas; España Fil: Najle, Sebastián Rodrigo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; Argentina. Universitat Pompeu Fabra; España. Consejo Superior de Investigaciones Científicas; España Fil: Scazzocchio, Claudio. Imperial College London; Reino Unido. Institute for Integrative Biology of the Cell; Francia Fil: Ruiz Trillo, Iñaki. Universitat Pompeu Fabra; España. Consejo Superior de Investigaciones Científicas; España. Universidad de Barcelona; España. International Computer Room Experts Association; España |
description |
Genes and genomes can evolve through interchanging genetic material, this leading to reticular evolutionary patterns. However, the importance of reticulate evolution in eukaryotes, and in particular of horizontal gene transfer (HGT), remains controversial. Given that metabolic pathways with taxonomically-patchy distributions can be indicative of HGT events, the eukaryotic nitrate assimilation pathway is an ideal object of investigation, as previous results revealed a patchy distribution and suggested that the nitrate assimilation cluster of dikaryotic fungi (Opisthokonta) could have been originated and transferred from a lineage leading to Oomycota (Stramenopiles). We studied the origin and evolution of this pathway through both multi-scale bioinformatic and experimental approaches. Our taxonrich genomic screening shows that nitrate assimilation is present in more lineages than previously reported, although being restricted to autotrophs and osmotrophs. The phylogenies indicate a pervasive role of HGT, with three bacterial transfers contributing to the pathway origin, and at least seven well-supported transfers between eukaryotes. In particular, we propose a distinct and more complex HGT path between Opisthokonta and Stramenopiles than the one previously suggested, involving at least two transfers of a nitrate assimilation gene cluster. We also found that gene fusion played an essential role in this evolutionary history, underlying the origin of the canonical eukaryotic nitrate reductase, and of a chimeric nitrate reductase in Ichthyosporea (Opisthokonta). We show that the ichthyosporean pathway, including this novel nitrate reductase, is physiologically active and transcriptionally coregulated, responding to different nitrogen sources; similarly to distant eukaryotes with independent HGT-acquisitions of the pathway. This indicates that this pattern of transcriptional control evolved convergently in eukaryotes, favoring the proper integration of the pathway in the metabolic landscape. Our results highlight the importance of reticulate evolution in eukaryotes, by showing the crucial contribution of HGT and gene fusion in the evolutionary history of the nitrate assimilation pathway. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/151486 Ocaña Pallarès, Eduard; Najle, Sebastián Rodrigo; Scazzocchio, Claudio; Ruiz Trillo, Iñaki; Reticulate evolution in eukaryotes: Origin and evolution of the nitrate assimilation pathway; Public Library of Science; Plos Genetics; 15; 2; 2-2019; 1-39 1553-7404 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/151486 |
identifier_str_mv |
Ocaña Pallarès, Eduard; Najle, Sebastián Rodrigo; Scazzocchio, Claudio; Ruiz Trillo, Iñaki; Reticulate evolution in eukaryotes: Origin and evolution of the nitrate assimilation pathway; Public Library of Science; Plos Genetics; 15; 2; 2-2019; 1-39 1553-7404 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://dx.plos.org/10.1371/journal.pgen.1007986 info:eu-repo/semantics/altIdentifier/doi/10.1371/journal.pgen.1007986 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Public Library of Science |
publisher.none.fl_str_mv |
Public Library of Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842270139979923456 |
score |
13.13397 |