Reticulate evolution in eukaryotes: Origin and evolution of the nitrate assimilation pathway

Autores
Ocaña Pallarès, Eduard; Najle, Sebastián Rodrigo; Scazzocchio, Claudio; Ruiz Trillo, Iñaki
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Genes and genomes can evolve through interchanging genetic material, this leading to reticular evolutionary patterns. However, the importance of reticulate evolution in eukaryotes, and in particular of horizontal gene transfer (HGT), remains controversial. Given that metabolic pathways with taxonomically-patchy distributions can be indicative of HGT events, the eukaryotic nitrate assimilation pathway is an ideal object of investigation, as previous results revealed a patchy distribution and suggested that the nitrate assimilation cluster of dikaryotic fungi (Opisthokonta) could have been originated and transferred from a lineage leading to Oomycota (Stramenopiles). We studied the origin and evolution of this pathway through both multi-scale bioinformatic and experimental approaches. Our taxonrich genomic screening shows that nitrate assimilation is present in more lineages than previously reported, although being restricted to autotrophs and osmotrophs. The phylogenies indicate a pervasive role of HGT, with three bacterial transfers contributing to the pathway origin, and at least seven well-supported transfers between eukaryotes. In particular, we propose a distinct and more complex HGT path between Opisthokonta and Stramenopiles than the one previously suggested, involving at least two transfers of a nitrate assimilation gene cluster. We also found that gene fusion played an essential role in this evolutionary history, underlying the origin of the canonical eukaryotic nitrate reductase, and of a chimeric nitrate reductase in Ichthyosporea (Opisthokonta). We show that the ichthyosporean pathway, including this novel nitrate reductase, is physiologically active and transcriptionally coregulated, responding to different nitrogen sources; similarly to distant eukaryotes with independent HGT-acquisitions of the pathway. This indicates that this pattern of transcriptional control evolved convergently in eukaryotes, favoring the proper integration of the pathway in the metabolic landscape. Our results highlight the importance of reticulate evolution in eukaryotes, by showing the crucial contribution of HGT and gene fusion in the evolutionary history of the nitrate assimilation pathway.
Fil: Ocaña Pallarès, Eduard. Universitat Pompeu Fabra; España. Consejo Superior de Investigaciones Científicas; España
Fil: Najle, Sebastián Rodrigo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; Argentina. Universitat Pompeu Fabra; España. Consejo Superior de Investigaciones Científicas; España
Fil: Scazzocchio, Claudio. Imperial College London; Reino Unido. Institute for Integrative Biology of the Cell; Francia
Fil: Ruiz Trillo, Iñaki. Universitat Pompeu Fabra; España. Consejo Superior de Investigaciones Científicas; España. Universidad de Barcelona; España. International Computer Room Experts Association; España
Materia
EUKARYOTIC EVOLUTION
HORIZONTAL GENE TRANSFER
NITRATE ASSIMILATION CLUSTER
ICHTHYSOPOREA
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/151486

id CONICETDig_593e9d841c14e715596b11fff5e4c336
oai_identifier_str oai:ri.conicet.gov.ar:11336/151486
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Reticulate evolution in eukaryotes: Origin and evolution of the nitrate assimilation pathwayOcaña Pallarès, EduardNajle, Sebastián RodrigoScazzocchio, ClaudioRuiz Trillo, IñakiEUKARYOTIC EVOLUTIONHORIZONTAL GENE TRANSFERNITRATE ASSIMILATION CLUSTERICHTHYSOPOREAhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Genes and genomes can evolve through interchanging genetic material, this leading to reticular evolutionary patterns. However, the importance of reticulate evolution in eukaryotes, and in particular of horizontal gene transfer (HGT), remains controversial. Given that metabolic pathways with taxonomically-patchy distributions can be indicative of HGT events, the eukaryotic nitrate assimilation pathway is an ideal object of investigation, as previous results revealed a patchy distribution and suggested that the nitrate assimilation cluster of dikaryotic fungi (Opisthokonta) could have been originated and transferred from a lineage leading to Oomycota (Stramenopiles). We studied the origin and evolution of this pathway through both multi-scale bioinformatic and experimental approaches. Our taxonrich genomic screening shows that nitrate assimilation is present in more lineages than previously reported, although being restricted to autotrophs and osmotrophs. The phylogenies indicate a pervasive role of HGT, with three bacterial transfers contributing to the pathway origin, and at least seven well-supported transfers between eukaryotes. In particular, we propose a distinct and more complex HGT path between Opisthokonta and Stramenopiles than the one previously suggested, involving at least two transfers of a nitrate assimilation gene cluster. We also found that gene fusion played an essential role in this evolutionary history, underlying the origin of the canonical eukaryotic nitrate reductase, and of a chimeric nitrate reductase in Ichthyosporea (Opisthokonta). We show that the ichthyosporean pathway, including this novel nitrate reductase, is physiologically active and transcriptionally coregulated, responding to different nitrogen sources; similarly to distant eukaryotes with independent HGT-acquisitions of the pathway. This indicates that this pattern of transcriptional control evolved convergently in eukaryotes, favoring the proper integration of the pathway in the metabolic landscape. Our results highlight the importance of reticulate evolution in eukaryotes, by showing the crucial contribution of HGT and gene fusion in the evolutionary history of the nitrate assimilation pathway.Fil: Ocaña Pallarès, Eduard. Universitat Pompeu Fabra; España. Consejo Superior de Investigaciones Científicas; EspañaFil: Najle, Sebastián Rodrigo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; Argentina. Universitat Pompeu Fabra; España. Consejo Superior de Investigaciones Científicas; EspañaFil: Scazzocchio, Claudio. Imperial College London; Reino Unido. Institute for Integrative Biology of the Cell; FranciaFil: Ruiz Trillo, Iñaki. Universitat Pompeu Fabra; España. Consejo Superior de Investigaciones Científicas; España. Universidad de Barcelona; España. International Computer Room Experts Association; EspañaPublic Library of Science2019-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/151486Ocaña Pallarès, Eduard; Najle, Sebastián Rodrigo; Scazzocchio, Claudio; Ruiz Trillo, Iñaki; Reticulate evolution in eukaryotes: Origin and evolution of the nitrate assimilation pathway; Public Library of Science; Plos Genetics; 15; 2; 2-2019; 1-391553-7404CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://dx.plos.org/10.1371/journal.pgen.1007986info:eu-repo/semantics/altIdentifier/doi/10.1371/journal.pgen.1007986info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:10:58Zoai:ri.conicet.gov.ar:11336/151486instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:10:58.818CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Reticulate evolution in eukaryotes: Origin and evolution of the nitrate assimilation pathway
title Reticulate evolution in eukaryotes: Origin and evolution of the nitrate assimilation pathway
spellingShingle Reticulate evolution in eukaryotes: Origin and evolution of the nitrate assimilation pathway
Ocaña Pallarès, Eduard
EUKARYOTIC EVOLUTION
HORIZONTAL GENE TRANSFER
NITRATE ASSIMILATION CLUSTER
ICHTHYSOPOREA
title_short Reticulate evolution in eukaryotes: Origin and evolution of the nitrate assimilation pathway
title_full Reticulate evolution in eukaryotes: Origin and evolution of the nitrate assimilation pathway
title_fullStr Reticulate evolution in eukaryotes: Origin and evolution of the nitrate assimilation pathway
title_full_unstemmed Reticulate evolution in eukaryotes: Origin and evolution of the nitrate assimilation pathway
title_sort Reticulate evolution in eukaryotes: Origin and evolution of the nitrate assimilation pathway
dc.creator.none.fl_str_mv Ocaña Pallarès, Eduard
Najle, Sebastián Rodrigo
Scazzocchio, Claudio
Ruiz Trillo, Iñaki
author Ocaña Pallarès, Eduard
author_facet Ocaña Pallarès, Eduard
Najle, Sebastián Rodrigo
Scazzocchio, Claudio
Ruiz Trillo, Iñaki
author_role author
author2 Najle, Sebastián Rodrigo
Scazzocchio, Claudio
Ruiz Trillo, Iñaki
author2_role author
author
author
dc.subject.none.fl_str_mv EUKARYOTIC EVOLUTION
HORIZONTAL GENE TRANSFER
NITRATE ASSIMILATION CLUSTER
ICHTHYSOPOREA
topic EUKARYOTIC EVOLUTION
HORIZONTAL GENE TRANSFER
NITRATE ASSIMILATION CLUSTER
ICHTHYSOPOREA
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Genes and genomes can evolve through interchanging genetic material, this leading to reticular evolutionary patterns. However, the importance of reticulate evolution in eukaryotes, and in particular of horizontal gene transfer (HGT), remains controversial. Given that metabolic pathways with taxonomically-patchy distributions can be indicative of HGT events, the eukaryotic nitrate assimilation pathway is an ideal object of investigation, as previous results revealed a patchy distribution and suggested that the nitrate assimilation cluster of dikaryotic fungi (Opisthokonta) could have been originated and transferred from a lineage leading to Oomycota (Stramenopiles). We studied the origin and evolution of this pathway through both multi-scale bioinformatic and experimental approaches. Our taxonrich genomic screening shows that nitrate assimilation is present in more lineages than previously reported, although being restricted to autotrophs and osmotrophs. The phylogenies indicate a pervasive role of HGT, with three bacterial transfers contributing to the pathway origin, and at least seven well-supported transfers between eukaryotes. In particular, we propose a distinct and more complex HGT path between Opisthokonta and Stramenopiles than the one previously suggested, involving at least two transfers of a nitrate assimilation gene cluster. We also found that gene fusion played an essential role in this evolutionary history, underlying the origin of the canonical eukaryotic nitrate reductase, and of a chimeric nitrate reductase in Ichthyosporea (Opisthokonta). We show that the ichthyosporean pathway, including this novel nitrate reductase, is physiologically active and transcriptionally coregulated, responding to different nitrogen sources; similarly to distant eukaryotes with independent HGT-acquisitions of the pathway. This indicates that this pattern of transcriptional control evolved convergently in eukaryotes, favoring the proper integration of the pathway in the metabolic landscape. Our results highlight the importance of reticulate evolution in eukaryotes, by showing the crucial contribution of HGT and gene fusion in the evolutionary history of the nitrate assimilation pathway.
Fil: Ocaña Pallarès, Eduard. Universitat Pompeu Fabra; España. Consejo Superior de Investigaciones Científicas; España
Fil: Najle, Sebastián Rodrigo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; Argentina. Universitat Pompeu Fabra; España. Consejo Superior de Investigaciones Científicas; España
Fil: Scazzocchio, Claudio. Imperial College London; Reino Unido. Institute for Integrative Biology of the Cell; Francia
Fil: Ruiz Trillo, Iñaki. Universitat Pompeu Fabra; España. Consejo Superior de Investigaciones Científicas; España. Universidad de Barcelona; España. International Computer Room Experts Association; España
description Genes and genomes can evolve through interchanging genetic material, this leading to reticular evolutionary patterns. However, the importance of reticulate evolution in eukaryotes, and in particular of horizontal gene transfer (HGT), remains controversial. Given that metabolic pathways with taxonomically-patchy distributions can be indicative of HGT events, the eukaryotic nitrate assimilation pathway is an ideal object of investigation, as previous results revealed a patchy distribution and suggested that the nitrate assimilation cluster of dikaryotic fungi (Opisthokonta) could have been originated and transferred from a lineage leading to Oomycota (Stramenopiles). We studied the origin and evolution of this pathway through both multi-scale bioinformatic and experimental approaches. Our taxonrich genomic screening shows that nitrate assimilation is present in more lineages than previously reported, although being restricted to autotrophs and osmotrophs. The phylogenies indicate a pervasive role of HGT, with three bacterial transfers contributing to the pathway origin, and at least seven well-supported transfers between eukaryotes. In particular, we propose a distinct and more complex HGT path between Opisthokonta and Stramenopiles than the one previously suggested, involving at least two transfers of a nitrate assimilation gene cluster. We also found that gene fusion played an essential role in this evolutionary history, underlying the origin of the canonical eukaryotic nitrate reductase, and of a chimeric nitrate reductase in Ichthyosporea (Opisthokonta). We show that the ichthyosporean pathway, including this novel nitrate reductase, is physiologically active and transcriptionally coregulated, responding to different nitrogen sources; similarly to distant eukaryotes with independent HGT-acquisitions of the pathway. This indicates that this pattern of transcriptional control evolved convergently in eukaryotes, favoring the proper integration of the pathway in the metabolic landscape. Our results highlight the importance of reticulate evolution in eukaryotes, by showing the crucial contribution of HGT and gene fusion in the evolutionary history of the nitrate assimilation pathway.
publishDate 2019
dc.date.none.fl_str_mv 2019-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/151486
Ocaña Pallarès, Eduard; Najle, Sebastián Rodrigo; Scazzocchio, Claudio; Ruiz Trillo, Iñaki; Reticulate evolution in eukaryotes: Origin and evolution of the nitrate assimilation pathway; Public Library of Science; Plos Genetics; 15; 2; 2-2019; 1-39
1553-7404
CONICET Digital
CONICET
url http://hdl.handle.net/11336/151486
identifier_str_mv Ocaña Pallarès, Eduard; Najle, Sebastián Rodrigo; Scazzocchio, Claudio; Ruiz Trillo, Iñaki; Reticulate evolution in eukaryotes: Origin and evolution of the nitrate assimilation pathway; Public Library of Science; Plos Genetics; 15; 2; 2-2019; 1-39
1553-7404
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://dx.plos.org/10.1371/journal.pgen.1007986
info:eu-repo/semantics/altIdentifier/doi/10.1371/journal.pgen.1007986
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Public Library of Science
publisher.none.fl_str_mv Public Library of Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842270139979923456
score 13.13397