Effects of glutamate transport substrates and glutamate receptor ligands on the activity of Na+/K+-ATPase in brain tissue in vitro

Autores
Nanitsos, Ellas K.; Acosta, Gabriela Beatriz; Saihara, Yukiko; Stanton, David; Liao, Lee P.; Shin, Jae W.; Rae, Caroline; Balcar, Vladimir J.
Año de publicación
2004
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
1. It has been suggested that Na+/K+-ATPase and Na+-dependent glutamate transport (GluT) are tightly linked in brain tissue. In the present study, we have investigated Na+/K +-ATPase activity using Rb+ uptake by 'minislices' (prisms) of the cerebral cortex. This preparation preserves the morphology of neurons, synapses and astrocytes and is known to possess potent GluT that has been well characterized. Uptake of Rb+ was determined by estimating Rb+ in aqueous extracts of the minislices, using atomic absorption spectroscopy. 2. We determined the potencies of several known substrates/inhibitors of GluT, such as L-trans-pyrrolidine-2,4-dicarboxylate (LtPDC), DL-threo-3-benzyloxyaspartic acid, (2S,3S,4R)-2-(carboxycyclopropyl)- glycine (L-CCG III) and L-anti,endo-3,4-methanopyrrolidine dicarboxylic acid, as inhibitors of [3H]-L-glutamate uptake by cortical prisms. In addition, we established the susceptibility of GluT, measured as [ 3H]-L-glutamate uptake in brain cortical prisms, to the inhibition of Na+/K+-ATPase by ouabain. Then, we tested the hypothesis that the Na+/K+-ATPase (measured as Rb+ uptake) can respond to changes in the activity of GluT produced by using GluT substrates as GluT-specific pharmacological tools. 3. The Na+/K +-ATPase inhibitor ouabain completely blocked Rb+ uptake (IC50 = 17 μmol/L), but it also potently inhibited a fraction of GluT (approximately 50% of [3H]-L-glutamate uptake was eliminated; IC50 < 1 μmol/L). 4. None of the most commonly used GluT substrates and inhibitors, such as L-aspartate, D-aspartate, L-CCG III and LtPDC (all at 500 μmol/L), produced any significant changes in Rb+ uptake. 5. The N-methyl-D-aspartate (NMDA) receptor agonists (R,S)-(tetrazol-5-yl)-glycine and NMDA decreased Rb+ uptake in a manner compatible with their known neurotoxic actions. 6. None of the agonists or antagonists for any of the other major classes of glutamate receptors caused significant changes in Rb+ uptake. 7. We conclude that, even if a subpopulation of glutamate transporters in the rat cerebral cortex may be intimately linked to a fraction of Na+/K+-ATPase, it is not possible, under the present experimental conditions, to detect regulation of Na+/K+-ATPase by GluT.
Fil: Acosta, Gabriela Beatriz. ININFA; Argentina
Materia
BRAIN ENERGY METABOLISM
EXCITATORY AMINO ACID TRANSPORTER SUBSTRATES AND INHIBITORS
NA+ AND K+-DEPENDENT TRANSPORT OF L-GLUTAMATE
NA+/K+-ATPASE
RB+ UPTAKE
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/94087

id CONICETDig_582c9151594947267166aaea710d7230
oai_identifier_str oai:ri.conicet.gov.ar:11336/94087
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Effects of glutamate transport substrates and glutamate receptor ligands on the activity of Na+/K+-ATPase in brain tissue in vitroNanitsos, Ellas K.Acosta, Gabriela BeatrizSaihara, YukikoStanton, DavidLiao, Lee P.Shin, Jae W.Rae, CarolineBalcar, Vladimir J.BRAIN ENERGY METABOLISMEXCITATORY AMINO ACID TRANSPORTER SUBSTRATES AND INHIBITORSNA+ AND K+-DEPENDENT TRANSPORT OF L-GLUTAMATENA+/K+-ATPASERB+ UPTAKEhttps://purl.org/becyt/ford/3.1https://purl.org/becyt/ford/31. It has been suggested that Na+/K+-ATPase and Na+-dependent glutamate transport (GluT) are tightly linked in brain tissue. In the present study, we have investigated Na+/K +-ATPase activity using Rb+ uptake by 'minislices' (prisms) of the cerebral cortex. This preparation preserves the morphology of neurons, synapses and astrocytes and is known to possess potent GluT that has been well characterized. Uptake of Rb+ was determined by estimating Rb+ in aqueous extracts of the minislices, using atomic absorption spectroscopy. 2. We determined the potencies of several known substrates/inhibitors of GluT, such as L-trans-pyrrolidine-2,4-dicarboxylate (LtPDC), DL-threo-3-benzyloxyaspartic acid, (2S,3S,4R)-2-(carboxycyclopropyl)- glycine (L-CCG III) and L-anti,endo-3,4-methanopyrrolidine dicarboxylic acid, as inhibitors of [3H]-L-glutamate uptake by cortical prisms. In addition, we established the susceptibility of GluT, measured as [ 3H]-L-glutamate uptake in brain cortical prisms, to the inhibition of Na+/K+-ATPase by ouabain. Then, we tested the hypothesis that the Na+/K+-ATPase (measured as Rb+ uptake) can respond to changes in the activity of GluT produced by using GluT substrates as GluT-specific pharmacological tools. 3. The Na+/K +-ATPase inhibitor ouabain completely blocked Rb+ uptake (IC50 = 17 μmol/L), but it also potently inhibited a fraction of GluT (approximately 50% of [3H]-L-glutamate uptake was eliminated; IC50 < 1 μmol/L). 4. None of the most commonly used GluT substrates and inhibitors, such as L-aspartate, D-aspartate, L-CCG III and LtPDC (all at 500 μmol/L), produced any significant changes in Rb+ uptake. 5. The N-methyl-D-aspartate (NMDA) receptor agonists (R,S)-(tetrazol-5-yl)-glycine and NMDA decreased Rb+ uptake in a manner compatible with their known neurotoxic actions. 6. None of the agonists or antagonists for any of the other major classes of glutamate receptors caused significant changes in Rb+ uptake. 7. We conclude that, even if a subpopulation of glutamate transporters in the rat cerebral cortex may be intimately linked to a fraction of Na+/K+-ATPase, it is not possible, under the present experimental conditions, to detect regulation of Na+/K+-ATPase by GluT.Fil: Acosta, Gabriela Beatriz. ININFA; ArgentinaWiley Blackwell Publishing, Inc2004-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/94087Nanitsos, Ellas K.; Acosta, Gabriela Beatriz; Saihara, Yukiko; Stanton, David; Liao, Lee P.; et al.; Effects of glutamate transport substrates and glutamate receptor ligands on the activity of Na+/K+-ATPase in brain tissue in vitro; Wiley Blackwell Publishing, Inc; Clinical and Experimental Pharmacology and Physiology; 31; 11; 11-2004; 762-7690305-1870CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/full/10.1111/j.1440-1681.2004.04090.x?sid=nlm%3Apubmedinfo:eu-repo/semantics/altIdentifier/doi/10.1111/j.1440-1681.2004.04090.xinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:43:21Zoai:ri.conicet.gov.ar:11336/94087instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:43:21.743CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Effects of glutamate transport substrates and glutamate receptor ligands on the activity of Na+/K+-ATPase in brain tissue in vitro
title Effects of glutamate transport substrates and glutamate receptor ligands on the activity of Na+/K+-ATPase in brain tissue in vitro
spellingShingle Effects of glutamate transport substrates and glutamate receptor ligands on the activity of Na+/K+-ATPase in brain tissue in vitro
Nanitsos, Ellas K.
BRAIN ENERGY METABOLISM
EXCITATORY AMINO ACID TRANSPORTER SUBSTRATES AND INHIBITORS
NA+ AND K+-DEPENDENT TRANSPORT OF L-GLUTAMATE
NA+/K+-ATPASE
RB+ UPTAKE
title_short Effects of glutamate transport substrates and glutamate receptor ligands on the activity of Na+/K+-ATPase in brain tissue in vitro
title_full Effects of glutamate transport substrates and glutamate receptor ligands on the activity of Na+/K+-ATPase in brain tissue in vitro
title_fullStr Effects of glutamate transport substrates and glutamate receptor ligands on the activity of Na+/K+-ATPase in brain tissue in vitro
title_full_unstemmed Effects of glutamate transport substrates and glutamate receptor ligands on the activity of Na+/K+-ATPase in brain tissue in vitro
title_sort Effects of glutamate transport substrates and glutamate receptor ligands on the activity of Na+/K+-ATPase in brain tissue in vitro
dc.creator.none.fl_str_mv Nanitsos, Ellas K.
Acosta, Gabriela Beatriz
Saihara, Yukiko
Stanton, David
Liao, Lee P.
Shin, Jae W.
Rae, Caroline
Balcar, Vladimir J.
author Nanitsos, Ellas K.
author_facet Nanitsos, Ellas K.
Acosta, Gabriela Beatriz
Saihara, Yukiko
Stanton, David
Liao, Lee P.
Shin, Jae W.
Rae, Caroline
Balcar, Vladimir J.
author_role author
author2 Acosta, Gabriela Beatriz
Saihara, Yukiko
Stanton, David
Liao, Lee P.
Shin, Jae W.
Rae, Caroline
Balcar, Vladimir J.
author2_role author
author
author
author
author
author
author
dc.subject.none.fl_str_mv BRAIN ENERGY METABOLISM
EXCITATORY AMINO ACID TRANSPORTER SUBSTRATES AND INHIBITORS
NA+ AND K+-DEPENDENT TRANSPORT OF L-GLUTAMATE
NA+/K+-ATPASE
RB+ UPTAKE
topic BRAIN ENERGY METABOLISM
EXCITATORY AMINO ACID TRANSPORTER SUBSTRATES AND INHIBITORS
NA+ AND K+-DEPENDENT TRANSPORT OF L-GLUTAMATE
NA+/K+-ATPASE
RB+ UPTAKE
purl_subject.fl_str_mv https://purl.org/becyt/ford/3.1
https://purl.org/becyt/ford/3
dc.description.none.fl_txt_mv 1. It has been suggested that Na+/K+-ATPase and Na+-dependent glutamate transport (GluT) are tightly linked in brain tissue. In the present study, we have investigated Na+/K +-ATPase activity using Rb+ uptake by 'minislices' (prisms) of the cerebral cortex. This preparation preserves the morphology of neurons, synapses and astrocytes and is known to possess potent GluT that has been well characterized. Uptake of Rb+ was determined by estimating Rb+ in aqueous extracts of the minislices, using atomic absorption spectroscopy. 2. We determined the potencies of several known substrates/inhibitors of GluT, such as L-trans-pyrrolidine-2,4-dicarboxylate (LtPDC), DL-threo-3-benzyloxyaspartic acid, (2S,3S,4R)-2-(carboxycyclopropyl)- glycine (L-CCG III) and L-anti,endo-3,4-methanopyrrolidine dicarboxylic acid, as inhibitors of [3H]-L-glutamate uptake by cortical prisms. In addition, we established the susceptibility of GluT, measured as [ 3H]-L-glutamate uptake in brain cortical prisms, to the inhibition of Na+/K+-ATPase by ouabain. Then, we tested the hypothesis that the Na+/K+-ATPase (measured as Rb+ uptake) can respond to changes in the activity of GluT produced by using GluT substrates as GluT-specific pharmacological tools. 3. The Na+/K +-ATPase inhibitor ouabain completely blocked Rb+ uptake (IC50 = 17 μmol/L), but it also potently inhibited a fraction of GluT (approximately 50% of [3H]-L-glutamate uptake was eliminated; IC50 < 1 μmol/L). 4. None of the most commonly used GluT substrates and inhibitors, such as L-aspartate, D-aspartate, L-CCG III and LtPDC (all at 500 μmol/L), produced any significant changes in Rb+ uptake. 5. The N-methyl-D-aspartate (NMDA) receptor agonists (R,S)-(tetrazol-5-yl)-glycine and NMDA decreased Rb+ uptake in a manner compatible with their known neurotoxic actions. 6. None of the agonists or antagonists for any of the other major classes of glutamate receptors caused significant changes in Rb+ uptake. 7. We conclude that, even if a subpopulation of glutamate transporters in the rat cerebral cortex may be intimately linked to a fraction of Na+/K+-ATPase, it is not possible, under the present experimental conditions, to detect regulation of Na+/K+-ATPase by GluT.
Fil: Acosta, Gabriela Beatriz. ININFA; Argentina
description 1. It has been suggested that Na+/K+-ATPase and Na+-dependent glutamate transport (GluT) are tightly linked in brain tissue. In the present study, we have investigated Na+/K +-ATPase activity using Rb+ uptake by 'minislices' (prisms) of the cerebral cortex. This preparation preserves the morphology of neurons, synapses and astrocytes and is known to possess potent GluT that has been well characterized. Uptake of Rb+ was determined by estimating Rb+ in aqueous extracts of the minislices, using atomic absorption spectroscopy. 2. We determined the potencies of several known substrates/inhibitors of GluT, such as L-trans-pyrrolidine-2,4-dicarboxylate (LtPDC), DL-threo-3-benzyloxyaspartic acid, (2S,3S,4R)-2-(carboxycyclopropyl)- glycine (L-CCG III) and L-anti,endo-3,4-methanopyrrolidine dicarboxylic acid, as inhibitors of [3H]-L-glutamate uptake by cortical prisms. In addition, we established the susceptibility of GluT, measured as [ 3H]-L-glutamate uptake in brain cortical prisms, to the inhibition of Na+/K+-ATPase by ouabain. Then, we tested the hypothesis that the Na+/K+-ATPase (measured as Rb+ uptake) can respond to changes in the activity of GluT produced by using GluT substrates as GluT-specific pharmacological tools. 3. The Na+/K +-ATPase inhibitor ouabain completely blocked Rb+ uptake (IC50 = 17 μmol/L), but it also potently inhibited a fraction of GluT (approximately 50% of [3H]-L-glutamate uptake was eliminated; IC50 < 1 μmol/L). 4. None of the most commonly used GluT substrates and inhibitors, such as L-aspartate, D-aspartate, L-CCG III and LtPDC (all at 500 μmol/L), produced any significant changes in Rb+ uptake. 5. The N-methyl-D-aspartate (NMDA) receptor agonists (R,S)-(tetrazol-5-yl)-glycine and NMDA decreased Rb+ uptake in a manner compatible with their known neurotoxic actions. 6. None of the agonists or antagonists for any of the other major classes of glutamate receptors caused significant changes in Rb+ uptake. 7. We conclude that, even if a subpopulation of glutamate transporters in the rat cerebral cortex may be intimately linked to a fraction of Na+/K+-ATPase, it is not possible, under the present experimental conditions, to detect regulation of Na+/K+-ATPase by GluT.
publishDate 2004
dc.date.none.fl_str_mv 2004-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/94087
Nanitsos, Ellas K.; Acosta, Gabriela Beatriz; Saihara, Yukiko; Stanton, David; Liao, Lee P.; et al.; Effects of glutamate transport substrates and glutamate receptor ligands on the activity of Na+/K+-ATPase in brain tissue in vitro; Wiley Blackwell Publishing, Inc; Clinical and Experimental Pharmacology and Physiology; 31; 11; 11-2004; 762-769
0305-1870
CONICET Digital
CONICET
url http://hdl.handle.net/11336/94087
identifier_str_mv Nanitsos, Ellas K.; Acosta, Gabriela Beatriz; Saihara, Yukiko; Stanton, David; Liao, Lee P.; et al.; Effects of glutamate transport substrates and glutamate receptor ligands on the activity of Na+/K+-ATPase in brain tissue in vitro; Wiley Blackwell Publishing, Inc; Clinical and Experimental Pharmacology and Physiology; 31; 11; 11-2004; 762-769
0305-1870
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/full/10.1111/j.1440-1681.2004.04090.x?sid=nlm%3Apubmed
info:eu-repo/semantics/altIdentifier/doi/10.1111/j.1440-1681.2004.04090.x
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Wiley Blackwell Publishing, Inc
publisher.none.fl_str_mv Wiley Blackwell Publishing, Inc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614468495998976
score 13.070432