Automatic recognition of quarantine citrus diseases
- Autores
- Stegmayer, Georgina; Milone, Diego Humberto; Garran, Sergio; Burdyn, Lourdes
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Citrus exports to foreign markets are severely limited today by fruit diseases. Some of them, like citrus canker, black spot and scab, are quarantine for the markets. For this reason, it is important to perform strict controls before fruits are exported to avoid the inclusion of citrus affected by them. Nowadays, technical decisions are based on visual diagnosis of human experts, highly dependent on the degree of individual skills. This work presents a model capable of automatic recognize the quarantine diseases. It is based on the combination of a feature selection method and a classifier that has been trained on quarantine illness symptoms. Citrus samples with citrus canker, black spot, scab and other diseases were evaluated. Experimental work was performed on 212 samples of mandarins from a Nova cultivar. The proposed approach achieved a classification rate of quarantine/not-quarantine samples of over 83% for all classes, even when using a small subset (14) of all the available features (90). The results obtained show that the proposed method can be suitable for helping the task of citrus visual diagnosis, in particular, quarantine diseases recognition in fruits.
Fil: Stegmayer, Georgina. Universidad Tecnologica Nacional. Facultad Regional Santa Fe. Centro de Investigacion y Desarrollo de Ingenieria en Sistemas de Informacion; Argentina. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnológico Santa Fe. Instituto de Investigacion en Señales, Sistemas e Inteligencia Computacional; Argentina
Fil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnológico Santa Fe. Instituto de Investigacion en Señales, Sistemas e Inteligencia Computacional; Argentina
Fil: Garran, Sergio. Instituto Nacional de Tecnología Agropecuaria; Argentina
Fil: Burdyn, Lourdes. Instituto Nacional de Tecnología Agropecuaria; Argentina - Materia
-
Pattern Recognition
Multiclass Classification
Neural Networks
Citrus Diseases - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/14701
Ver los metadatos del registro completo
id |
CONICETDig_57d1fe403e32f2e462fb6e03f7afe1d0 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/14701 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Automatic recognition of quarantine citrus diseasesStegmayer, GeorginaMilone, Diego HumbertoGarran, SergioBurdyn, LourdesPattern RecognitionMulticlass ClassificationNeural NetworksCitrus Diseaseshttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Citrus exports to foreign markets are severely limited today by fruit diseases. Some of them, like citrus canker, black spot and scab, are quarantine for the markets. For this reason, it is important to perform strict controls before fruits are exported to avoid the inclusion of citrus affected by them. Nowadays, technical decisions are based on visual diagnosis of human experts, highly dependent on the degree of individual skills. This work presents a model capable of automatic recognize the quarantine diseases. It is based on the combination of a feature selection method and a classifier that has been trained on quarantine illness symptoms. Citrus samples with citrus canker, black spot, scab and other diseases were evaluated. Experimental work was performed on 212 samples of mandarins from a Nova cultivar. The proposed approach achieved a classification rate of quarantine/not-quarantine samples of over 83% for all classes, even when using a small subset (14) of all the available features (90). The results obtained show that the proposed method can be suitable for helping the task of citrus visual diagnosis, in particular, quarantine diseases recognition in fruits.Fil: Stegmayer, Georgina. Universidad Tecnologica Nacional. Facultad Regional Santa Fe. Centro de Investigacion y Desarrollo de Ingenieria en Sistemas de Informacion; Argentina. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnológico Santa Fe. Instituto de Investigacion en Señales, Sistemas e Inteligencia Computacional; ArgentinaFil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnológico Santa Fe. Instituto de Investigacion en Señales, Sistemas e Inteligencia Computacional; ArgentinaFil: Garran, Sergio. Instituto Nacional de Tecnología Agropecuaria; ArgentinaFil: Burdyn, Lourdes. Instituto Nacional de Tecnología Agropecuaria; ArgentinaElsevier2013-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/14701Stegmayer, Georgina; Milone, Diego Humberto; Garran, Sergio; Burdyn, Lourdes; Automatic recognition of quarantine citrus diseases; Elsevier; Expert Systems With Applications; 40; 9; 7-2013; 3512-35170957-4174enginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.eswa.2012.12.059info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0957417412013000info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:55:27Zoai:ri.conicet.gov.ar:11336/14701instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:55:27.9CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Automatic recognition of quarantine citrus diseases |
title |
Automatic recognition of quarantine citrus diseases |
spellingShingle |
Automatic recognition of quarantine citrus diseases Stegmayer, Georgina Pattern Recognition Multiclass Classification Neural Networks Citrus Diseases |
title_short |
Automatic recognition of quarantine citrus diseases |
title_full |
Automatic recognition of quarantine citrus diseases |
title_fullStr |
Automatic recognition of quarantine citrus diseases |
title_full_unstemmed |
Automatic recognition of quarantine citrus diseases |
title_sort |
Automatic recognition of quarantine citrus diseases |
dc.creator.none.fl_str_mv |
Stegmayer, Georgina Milone, Diego Humberto Garran, Sergio Burdyn, Lourdes |
author |
Stegmayer, Georgina |
author_facet |
Stegmayer, Georgina Milone, Diego Humberto Garran, Sergio Burdyn, Lourdes |
author_role |
author |
author2 |
Milone, Diego Humberto Garran, Sergio Burdyn, Lourdes |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Pattern Recognition Multiclass Classification Neural Networks Citrus Diseases |
topic |
Pattern Recognition Multiclass Classification Neural Networks Citrus Diseases |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Citrus exports to foreign markets are severely limited today by fruit diseases. Some of them, like citrus canker, black spot and scab, are quarantine for the markets. For this reason, it is important to perform strict controls before fruits are exported to avoid the inclusion of citrus affected by them. Nowadays, technical decisions are based on visual diagnosis of human experts, highly dependent on the degree of individual skills. This work presents a model capable of automatic recognize the quarantine diseases. It is based on the combination of a feature selection method and a classifier that has been trained on quarantine illness symptoms. Citrus samples with citrus canker, black spot, scab and other diseases were evaluated. Experimental work was performed on 212 samples of mandarins from a Nova cultivar. The proposed approach achieved a classification rate of quarantine/not-quarantine samples of over 83% for all classes, even when using a small subset (14) of all the available features (90). The results obtained show that the proposed method can be suitable for helping the task of citrus visual diagnosis, in particular, quarantine diseases recognition in fruits. Fil: Stegmayer, Georgina. Universidad Tecnologica Nacional. Facultad Regional Santa Fe. Centro de Investigacion y Desarrollo de Ingenieria en Sistemas de Informacion; Argentina. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnológico Santa Fe. Instituto de Investigacion en Señales, Sistemas e Inteligencia Computacional; Argentina Fil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnológico Santa Fe. Instituto de Investigacion en Señales, Sistemas e Inteligencia Computacional; Argentina Fil: Garran, Sergio. Instituto Nacional de Tecnología Agropecuaria; Argentina Fil: Burdyn, Lourdes. Instituto Nacional de Tecnología Agropecuaria; Argentina |
description |
Citrus exports to foreign markets are severely limited today by fruit diseases. Some of them, like citrus canker, black spot and scab, are quarantine for the markets. For this reason, it is important to perform strict controls before fruits are exported to avoid the inclusion of citrus affected by them. Nowadays, technical decisions are based on visual diagnosis of human experts, highly dependent on the degree of individual skills. This work presents a model capable of automatic recognize the quarantine diseases. It is based on the combination of a feature selection method and a classifier that has been trained on quarantine illness symptoms. Citrus samples with citrus canker, black spot, scab and other diseases were evaluated. Experimental work was performed on 212 samples of mandarins from a Nova cultivar. The proposed approach achieved a classification rate of quarantine/not-quarantine samples of over 83% for all classes, even when using a small subset (14) of all the available features (90). The results obtained show that the proposed method can be suitable for helping the task of citrus visual diagnosis, in particular, quarantine diseases recognition in fruits. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/14701 Stegmayer, Georgina; Milone, Diego Humberto; Garran, Sergio; Burdyn, Lourdes; Automatic recognition of quarantine citrus diseases; Elsevier; Expert Systems With Applications; 40; 9; 7-2013; 3512-3517 0957-4174 |
url |
http://hdl.handle.net/11336/14701 |
identifier_str_mv |
Stegmayer, Georgina; Milone, Diego Humberto; Garran, Sergio; Burdyn, Lourdes; Automatic recognition of quarantine citrus diseases; Elsevier; Expert Systems With Applications; 40; 9; 7-2013; 3512-3517 0957-4174 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.eswa.2012.12.059 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0957417412013000 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269344812236800 |
score |
13.13397 |