Chaos and Intermittency in the DNLS Equation Describing the Parallel Alfvén Wave Propagation
- Autores
- Krause, Gustavo Javier; Elaskar, Sergio Amado; Costa, Andrea
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- When the Hall effect is included in the magnetohydrodynamics equations (Hall-MHD model) the wave propagation modes become coupled, but for propagation parallel to the ambient magnetic field the Alfvén mode decouples from the magnetosonic ones, resulting in circularly polarized waves that are described by the derivative nonlinear Schrödinger (DNLS) equation. In this paper, the DNLS equation is numerically solved using spectral methods for the spatial derivatives and a fourth order Runge-Kutta scheme for time integration. Firstly, the nondiffusive DNLS equation is considered to test the validity of the method by verifying the analytical condition of modulational stability. Later, diffusive and excitatory effects are incorporated to compare the numerical results with those obtained by a three-wave truncation model. The results show that different types of attractors can exist depending on the diffusion level: for relatively large damping, there are fixed points for which the truncation model is a good approximation; for low damping, chaotic solutions appear and the three-wave truncation model fails due to the emergence of new nonnegligible modes.
Fil: Krause, Gustavo Javier. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Departamento de Aeronáutica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Elaskar, Sergio Amado. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Departamento de Aeronáutica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Costa, Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomia Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomia Teórica y Experimental; Argentina - Materia
-
DNLS EQUATION
SPECTRAL METHODS
TRUNCATION METHOD
ALFVÉN WAVES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/32257
Ver los metadatos del registro completo
id |
CONICETDig_57a9eb638dfc07be10602cf549e597f6 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/32257 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Chaos and Intermittency in the DNLS Equation Describing the Parallel Alfvén Wave PropagationKrause, Gustavo JavierElaskar, Sergio AmadoCosta, AndreaDNLS EQUATIONSPECTRAL METHODSTRUNCATION METHODALFVÉN WAVEShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1When the Hall effect is included in the magnetohydrodynamics equations (Hall-MHD model) the wave propagation modes become coupled, but for propagation parallel to the ambient magnetic field the Alfvén mode decouples from the magnetosonic ones, resulting in circularly polarized waves that are described by the derivative nonlinear Schrödinger (DNLS) equation. In this paper, the DNLS equation is numerically solved using spectral methods for the spatial derivatives and a fourth order Runge-Kutta scheme for time integration. Firstly, the nondiffusive DNLS equation is considered to test the validity of the method by verifying the analytical condition of modulational stability. Later, diffusive and excitatory effects are incorporated to compare the numerical results with those obtained by a three-wave truncation model. The results show that different types of attractors can exist depending on the diffusion level: for relatively large damping, there are fixed points for which the truncation model is a good approximation; for low damping, chaotic solutions appear and the three-wave truncation model fails due to the emergence of new nonnegligible modes.Fil: Krause, Gustavo Javier. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Departamento de Aeronáutica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Elaskar, Sergio Amado. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Departamento de Aeronáutica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Costa, Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomia Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomia Teórica y Experimental; ArgentinaHindawi Publishing Corporation2014-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/32257Costa, Andrea; Elaskar, Sergio Amado; Krause, Gustavo Javier; Chaos and Intermittency in the DNLS Equation Describing the Parallel Alfvén Wave Propagation; Hindawi Publishing Corporation; Journal of Astrophysics; 2014; 4-2014; 1-15; 8120522356-718XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1155/2014/812052info:eu-repo/semantics/altIdentifier/url/https://www.hindawi.com/journals/jas/2014/812052/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:07:13Zoai:ri.conicet.gov.ar:11336/32257instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:07:13.639CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Chaos and Intermittency in the DNLS Equation Describing the Parallel Alfvén Wave Propagation |
title |
Chaos and Intermittency in the DNLS Equation Describing the Parallel Alfvén Wave Propagation |
spellingShingle |
Chaos and Intermittency in the DNLS Equation Describing the Parallel Alfvén Wave Propagation Krause, Gustavo Javier DNLS EQUATION SPECTRAL METHODS TRUNCATION METHOD ALFVÉN WAVES |
title_short |
Chaos and Intermittency in the DNLS Equation Describing the Parallel Alfvén Wave Propagation |
title_full |
Chaos and Intermittency in the DNLS Equation Describing the Parallel Alfvén Wave Propagation |
title_fullStr |
Chaos and Intermittency in the DNLS Equation Describing the Parallel Alfvén Wave Propagation |
title_full_unstemmed |
Chaos and Intermittency in the DNLS Equation Describing the Parallel Alfvén Wave Propagation |
title_sort |
Chaos and Intermittency in the DNLS Equation Describing the Parallel Alfvén Wave Propagation |
dc.creator.none.fl_str_mv |
Krause, Gustavo Javier Elaskar, Sergio Amado Costa, Andrea |
author |
Krause, Gustavo Javier |
author_facet |
Krause, Gustavo Javier Elaskar, Sergio Amado Costa, Andrea |
author_role |
author |
author2 |
Elaskar, Sergio Amado Costa, Andrea |
author2_role |
author author |
dc.subject.none.fl_str_mv |
DNLS EQUATION SPECTRAL METHODS TRUNCATION METHOD ALFVÉN WAVES |
topic |
DNLS EQUATION SPECTRAL METHODS TRUNCATION METHOD ALFVÉN WAVES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
When the Hall effect is included in the magnetohydrodynamics equations (Hall-MHD model) the wave propagation modes become coupled, but for propagation parallel to the ambient magnetic field the Alfvén mode decouples from the magnetosonic ones, resulting in circularly polarized waves that are described by the derivative nonlinear Schrödinger (DNLS) equation. In this paper, the DNLS equation is numerically solved using spectral methods for the spatial derivatives and a fourth order Runge-Kutta scheme for time integration. Firstly, the nondiffusive DNLS equation is considered to test the validity of the method by verifying the analytical condition of modulational stability. Later, diffusive and excitatory effects are incorporated to compare the numerical results with those obtained by a three-wave truncation model. The results show that different types of attractors can exist depending on the diffusion level: for relatively large damping, there are fixed points for which the truncation model is a good approximation; for low damping, chaotic solutions appear and the three-wave truncation model fails due to the emergence of new nonnegligible modes. Fil: Krause, Gustavo Javier. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Departamento de Aeronáutica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Elaskar, Sergio Amado. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Departamento de Aeronáutica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Costa, Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomia Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomia Teórica y Experimental; Argentina |
description |
When the Hall effect is included in the magnetohydrodynamics equations (Hall-MHD model) the wave propagation modes become coupled, but for propagation parallel to the ambient magnetic field the Alfvén mode decouples from the magnetosonic ones, resulting in circularly polarized waves that are described by the derivative nonlinear Schrödinger (DNLS) equation. In this paper, the DNLS equation is numerically solved using spectral methods for the spatial derivatives and a fourth order Runge-Kutta scheme for time integration. Firstly, the nondiffusive DNLS equation is considered to test the validity of the method by verifying the analytical condition of modulational stability. Later, diffusive and excitatory effects are incorporated to compare the numerical results with those obtained by a three-wave truncation model. The results show that different types of attractors can exist depending on the diffusion level: for relatively large damping, there are fixed points for which the truncation model is a good approximation; for low damping, chaotic solutions appear and the three-wave truncation model fails due to the emergence of new nonnegligible modes. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/32257 Costa, Andrea; Elaskar, Sergio Amado; Krause, Gustavo Javier; Chaos and Intermittency in the DNLS Equation Describing the Parallel Alfvén Wave Propagation; Hindawi Publishing Corporation; Journal of Astrophysics; 2014; 4-2014; 1-15; 812052 2356-718X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/32257 |
identifier_str_mv |
Costa, Andrea; Elaskar, Sergio Amado; Krause, Gustavo Javier; Chaos and Intermittency in the DNLS Equation Describing the Parallel Alfvén Wave Propagation; Hindawi Publishing Corporation; Journal of Astrophysics; 2014; 4-2014; 1-15; 812052 2356-718X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1155/2014/812052 info:eu-repo/semantics/altIdentifier/url/https://www.hindawi.com/journals/jas/2014/812052/ |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Hindawi Publishing Corporation |
publisher.none.fl_str_mv |
Hindawi Publishing Corporation |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269994779410432 |
score |
13.13397 |