Alfvén waves and wings in Hall magnetohydrodynamics
- Autores
- Sallago, Patricia Alejandra; Platzeck, Ana María
- Año de publicación
- 2004
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The problem of a conducting body moving in a magnetized plasma when the electronic pressure and Hall terms in Ohm's law cannot be neglected is analyzed in the magnetohydrodynamic approximation. Since Alfvén wings are closely related to Alfvén waves, the influence of these terms in the propagation of AlfVénic perturbations of large amplitude is studied. Instead of linearizing the magnetohydrodynamic equations and searching monochromatic waves, the conditions that the group velocity be parallel to the background magnetic induction field, in the reference system in which the plasma is locally at rest, that the perturbation be incompressible, that the perturbations in velocity and the magnetic induction field be related, and that a magnitude connected to the pressure remain constant are imposed. It is shown that large-amplitude Alfvén waves can propagate in homogeneous plasmas if a "polarization condition" on the current density is fulfilled. The value of their group velocity is different from the value that it takes when simple Ohm's law is used. On the other hand, the methodology of stream functions is used for the analysis of Alfvén wings. Their existence, when the Hall term in Ohm's law is relevant, is proved, and the-relations among the plasma pressure, induction magnetic field, velocity, and electric current density in the wing are found. The present results can be applied, as an approximation, to spacecraft or space tethers moving in a circular orbit if one can consider that the density and the magnetic induction field do not change as the source is orbiting and if the influence of partial ionization can be neglected.
Facultad de Ciencias Astronómicas y Geofísicas - Materia
-
Ciencias Astronómicas
Alfvén waves
Alfvén wings
Hall
Magnetohydrodynamics
Space plasmas - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/84473
Ver los metadatos del registro completo
id |
SEDICI_883277761a19df618d638c9095ee3fda |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/84473 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Alfvén waves and wings in Hall magnetohydrodynamicsSallago, Patricia AlejandraPlatzeck, Ana MaríaCiencias AstronómicasAlfvén wavesAlfvén wingsHallMagnetohydrodynamicsSpace plasmasThe problem of a conducting body moving in a magnetized plasma when the electronic pressure and Hall terms in Ohm's law cannot be neglected is analyzed in the magnetohydrodynamic approximation. Since Alfvén wings are closely related to Alfvén waves, the influence of these terms in the propagation of AlfVénic perturbations of large amplitude is studied. Instead of linearizing the magnetohydrodynamic equations and searching monochromatic waves, the conditions that the group velocity be parallel to the background magnetic induction field, in the reference system in which the plasma is locally at rest, that the perturbation be incompressible, that the perturbations in velocity and the magnetic induction field be related, and that a magnitude connected to the pressure remain constant are imposed. It is shown that large-amplitude Alfvén waves can propagate in homogeneous plasmas if a "polarization condition" on the current density is fulfilled. The value of their group velocity is different from the value that it takes when simple Ohm's law is used. On the other hand, the methodology of stream functions is used for the analysis of Alfvén wings. Their existence, when the Hall term in Ohm's law is relevant, is proved, and the-relations among the plasma pressure, induction magnetic field, velocity, and electric current density in the wing are found. The present results can be applied, as an approximation, to spacecraft or space tethers moving in a circular orbit if one can consider that the density and the magnetic induction field do not change as the source is orbiting and if the influence of partial ionization can be neglected.Facultad de Ciencias Astronómicas y Geofísicas2004info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/84473enginfo:eu-repo/semantics/altIdentifier/issn/2169-9402info:eu-repo/semantics/altIdentifier/doi/10.1029/2003JA009920info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:48:32Zoai:sedici.unlp.edu.ar:10915/84473Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:48:32.447SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Alfvén waves and wings in Hall magnetohydrodynamics |
title |
Alfvén waves and wings in Hall magnetohydrodynamics |
spellingShingle |
Alfvén waves and wings in Hall magnetohydrodynamics Sallago, Patricia Alejandra Ciencias Astronómicas Alfvén waves Alfvén wings Hall Magnetohydrodynamics Space plasmas |
title_short |
Alfvén waves and wings in Hall magnetohydrodynamics |
title_full |
Alfvén waves and wings in Hall magnetohydrodynamics |
title_fullStr |
Alfvén waves and wings in Hall magnetohydrodynamics |
title_full_unstemmed |
Alfvén waves and wings in Hall magnetohydrodynamics |
title_sort |
Alfvén waves and wings in Hall magnetohydrodynamics |
dc.creator.none.fl_str_mv |
Sallago, Patricia Alejandra Platzeck, Ana María |
author |
Sallago, Patricia Alejandra |
author_facet |
Sallago, Patricia Alejandra Platzeck, Ana María |
author_role |
author |
author2 |
Platzeck, Ana María |
author2_role |
author |
dc.subject.none.fl_str_mv |
Ciencias Astronómicas Alfvén waves Alfvén wings Hall Magnetohydrodynamics Space plasmas |
topic |
Ciencias Astronómicas Alfvén waves Alfvén wings Hall Magnetohydrodynamics Space plasmas |
dc.description.none.fl_txt_mv |
The problem of a conducting body moving in a magnetized plasma when the electronic pressure and Hall terms in Ohm's law cannot be neglected is analyzed in the magnetohydrodynamic approximation. Since Alfvén wings are closely related to Alfvén waves, the influence of these terms in the propagation of AlfVénic perturbations of large amplitude is studied. Instead of linearizing the magnetohydrodynamic equations and searching monochromatic waves, the conditions that the group velocity be parallel to the background magnetic induction field, in the reference system in which the plasma is locally at rest, that the perturbation be incompressible, that the perturbations in velocity and the magnetic induction field be related, and that a magnitude connected to the pressure remain constant are imposed. It is shown that large-amplitude Alfvén waves can propagate in homogeneous plasmas if a "polarization condition" on the current density is fulfilled. The value of their group velocity is different from the value that it takes when simple Ohm's law is used. On the other hand, the methodology of stream functions is used for the analysis of Alfvén wings. Their existence, when the Hall term in Ohm's law is relevant, is proved, and the-relations among the plasma pressure, induction magnetic field, velocity, and electric current density in the wing are found. The present results can be applied, as an approximation, to spacecraft or space tethers moving in a circular orbit if one can consider that the density and the magnetic induction field do not change as the source is orbiting and if the influence of partial ionization can be neglected. Facultad de Ciencias Astronómicas y Geofísicas |
description |
The problem of a conducting body moving in a magnetized plasma when the electronic pressure and Hall terms in Ohm's law cannot be neglected is analyzed in the magnetohydrodynamic approximation. Since Alfvén wings are closely related to Alfvén waves, the influence of these terms in the propagation of AlfVénic perturbations of large amplitude is studied. Instead of linearizing the magnetohydrodynamic equations and searching monochromatic waves, the conditions that the group velocity be parallel to the background magnetic induction field, in the reference system in which the plasma is locally at rest, that the perturbation be incompressible, that the perturbations in velocity and the magnetic induction field be related, and that a magnitude connected to the pressure remain constant are imposed. It is shown that large-amplitude Alfvén waves can propagate in homogeneous plasmas if a "polarization condition" on the current density is fulfilled. The value of their group velocity is different from the value that it takes when simple Ohm's law is used. On the other hand, the methodology of stream functions is used for the analysis of Alfvén wings. Their existence, when the Hall term in Ohm's law is relevant, is proved, and the-relations among the plasma pressure, induction magnetic field, velocity, and electric current density in the wing are found. The present results can be applied, as an approximation, to spacecraft or space tethers moving in a circular orbit if one can consider that the density and the magnetic induction field do not change as the source is orbiting and if the influence of partial ionization can be neglected. |
publishDate |
2004 |
dc.date.none.fl_str_mv |
2004 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/84473 |
url |
http://sedici.unlp.edu.ar/handle/10915/84473 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/2169-9402 info:eu-repo/semantics/altIdentifier/doi/10.1029/2003JA009920 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260361214951424 |
score |
13.13397 |