Type-I intermittency with discontinuous reinjection probability density in a truncation model of the derivative nonlinear Schrödinger equation

Autores
Krause, Gustavo Javier; Elaskar, Sergio Amado; del Río, Ezequiel
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In previous papers, the type-I intermittent phenomenon with continuous reinjection probability density (RPD) has been extensively studied. However, in this paper type-I intermittency considering discontinuous RPD function in one-dimensional maps is analyzed. To carry out the present study the analytic approximation presented by del Río and Elaskar (Int. J. Bifurc. Chaos 20:1185–1191, 2010) and Elaskar et al. (Physica A. 390:2759–2768, 2011) is extended to consider discontinuous RPD functions. The results of this analysis show that the characteristic relation only depends on the position of the lower bound of reinjection (LBR), therefore for the LBR below the tangent point the relation ⟨l⟩∝ε−1/2⟨l⟩∝ε−1/2 , where εε is the control parameter, remains robust regardless the form of the RPD, although the average of the laminar phases ⟨l⟩⟨l⟩ can change. Finally, the study of discontinuous RPD for type-I intermittency which occurs in a three-wave truncation model for the derivative nonlinear Schrodinger equation is presented. In all tests the theoretical results properly verify the numerical data.
Fil: Krause, Gustavo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina
Fil: Elaskar, Sergio Amado. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina
Fil: del Río, Ezequiel. Universidad Politécnica de Madrid; España
Materia
Intermittency
Discontinuous Reinjection Probability Density
Characteristic Relation
Dnls Equation
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/33641

id CONICETDig_140ff81256487d9286fbc73afb17b875
oai_identifier_str oai:ri.conicet.gov.ar:11336/33641
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Type-I intermittency with discontinuous reinjection probability density in a truncation model of the derivative nonlinear Schrödinger equationKrause, Gustavo JavierElaskar, Sergio Amadodel Río, EzequielIntermittencyDiscontinuous Reinjection Probability DensityCharacteristic RelationDnls Equationhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1In previous papers, the type-I intermittent phenomenon with continuous reinjection probability density (RPD) has been extensively studied. However, in this paper type-I intermittency considering discontinuous RPD function in one-dimensional maps is analyzed. To carry out the present study the analytic approximation presented by del Río and Elaskar (Int. J. Bifurc. Chaos 20:1185–1191, 2010) and Elaskar et al. (Physica A. 390:2759–2768, 2011) is extended to consider discontinuous RPD functions. The results of this analysis show that the characteristic relation only depends on the position of the lower bound of reinjection (LBR), therefore for the LBR below the tangent point the relation ⟨l⟩∝ε−1/2⟨l⟩∝ε−1/2 , where εε is the control parameter, remains robust regardless the form of the RPD, although the average of the laminar phases ⟨l⟩⟨l⟩ can change. Finally, the study of discontinuous RPD for type-I intermittency which occurs in a three-wave truncation model for the derivative nonlinear Schrodinger equation is presented. In all tests the theoretical results properly verify the numerical data.Fil: Krause, Gustavo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; ArgentinaFil: Elaskar, Sergio Amado. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; ArgentinaFil: del Río, Ezequiel. Universidad Politécnica de Madrid; EspañaSpringer2014-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/33641del Río, Ezequiel; Krause, Gustavo Javier; Elaskar, Sergio Amado; Type-I intermittency with discontinuous reinjection probability density in a truncation model of the derivative nonlinear Schrödinger equation; Springer; Nonlinear Dynamics; 77; 3; 2-2014; 455-4660924-090XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s11071-014-1309-1info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs11071-014-1309-1info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:45:52Zoai:ri.conicet.gov.ar:11336/33641instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:45:52.928CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Type-I intermittency with discontinuous reinjection probability density in a truncation model of the derivative nonlinear Schrödinger equation
title Type-I intermittency with discontinuous reinjection probability density in a truncation model of the derivative nonlinear Schrödinger equation
spellingShingle Type-I intermittency with discontinuous reinjection probability density in a truncation model of the derivative nonlinear Schrödinger equation
Krause, Gustavo Javier
Intermittency
Discontinuous Reinjection Probability Density
Characteristic Relation
Dnls Equation
title_short Type-I intermittency with discontinuous reinjection probability density in a truncation model of the derivative nonlinear Schrödinger equation
title_full Type-I intermittency with discontinuous reinjection probability density in a truncation model of the derivative nonlinear Schrödinger equation
title_fullStr Type-I intermittency with discontinuous reinjection probability density in a truncation model of the derivative nonlinear Schrödinger equation
title_full_unstemmed Type-I intermittency with discontinuous reinjection probability density in a truncation model of the derivative nonlinear Schrödinger equation
title_sort Type-I intermittency with discontinuous reinjection probability density in a truncation model of the derivative nonlinear Schrödinger equation
dc.creator.none.fl_str_mv Krause, Gustavo Javier
Elaskar, Sergio Amado
del Río, Ezequiel
author Krause, Gustavo Javier
author_facet Krause, Gustavo Javier
Elaskar, Sergio Amado
del Río, Ezequiel
author_role author
author2 Elaskar, Sergio Amado
del Río, Ezequiel
author2_role author
author
dc.subject.none.fl_str_mv Intermittency
Discontinuous Reinjection Probability Density
Characteristic Relation
Dnls Equation
topic Intermittency
Discontinuous Reinjection Probability Density
Characteristic Relation
Dnls Equation
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In previous papers, the type-I intermittent phenomenon with continuous reinjection probability density (RPD) has been extensively studied. However, in this paper type-I intermittency considering discontinuous RPD function in one-dimensional maps is analyzed. To carry out the present study the analytic approximation presented by del Río and Elaskar (Int. J. Bifurc. Chaos 20:1185–1191, 2010) and Elaskar et al. (Physica A. 390:2759–2768, 2011) is extended to consider discontinuous RPD functions. The results of this analysis show that the characteristic relation only depends on the position of the lower bound of reinjection (LBR), therefore for the LBR below the tangent point the relation ⟨l⟩∝ε−1/2⟨l⟩∝ε−1/2 , where εε is the control parameter, remains robust regardless the form of the RPD, although the average of the laminar phases ⟨l⟩⟨l⟩ can change. Finally, the study of discontinuous RPD for type-I intermittency which occurs in a three-wave truncation model for the derivative nonlinear Schrodinger equation is presented. In all tests the theoretical results properly verify the numerical data.
Fil: Krause, Gustavo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina
Fil: Elaskar, Sergio Amado. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina
Fil: del Río, Ezequiel. Universidad Politécnica de Madrid; España
description In previous papers, the type-I intermittent phenomenon with continuous reinjection probability density (RPD) has been extensively studied. However, in this paper type-I intermittency considering discontinuous RPD function in one-dimensional maps is analyzed. To carry out the present study the analytic approximation presented by del Río and Elaskar (Int. J. Bifurc. Chaos 20:1185–1191, 2010) and Elaskar et al. (Physica A. 390:2759–2768, 2011) is extended to consider discontinuous RPD functions. The results of this analysis show that the characteristic relation only depends on the position of the lower bound of reinjection (LBR), therefore for the LBR below the tangent point the relation ⟨l⟩∝ε−1/2⟨l⟩∝ε−1/2 , where εε is the control parameter, remains robust regardless the form of the RPD, although the average of the laminar phases ⟨l⟩⟨l⟩ can change. Finally, the study of discontinuous RPD for type-I intermittency which occurs in a three-wave truncation model for the derivative nonlinear Schrodinger equation is presented. In all tests the theoretical results properly verify the numerical data.
publishDate 2014
dc.date.none.fl_str_mv 2014-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/33641
del Río, Ezequiel; Krause, Gustavo Javier; Elaskar, Sergio Amado; Type-I intermittency with discontinuous reinjection probability density in a truncation model of the derivative nonlinear Schrödinger equation; Springer; Nonlinear Dynamics; 77; 3; 2-2014; 455-466
0924-090X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/33641
identifier_str_mv del Río, Ezequiel; Krause, Gustavo Javier; Elaskar, Sergio Amado; Type-I intermittency with discontinuous reinjection probability density in a truncation model of the derivative nonlinear Schrödinger equation; Springer; Nonlinear Dynamics; 77; 3; 2-2014; 455-466
0924-090X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1007/s11071-014-1309-1
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs11071-014-1309-1
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614498799845376
score 13.070432