Whispering neurons fuel cortical highways
- Autores
- Schinder, Alejandro Fabián; Lanuza, Guillermo Marcos
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Synaptic communication accelerates neuronal migration in the developing brain. The mammalian neocortex is one of the most intricate entities found in nature, both in terms of structure and function. It is the brain region responsible for the execution of high-order functions, including sensory perception, motor control, cognition, and speech. Its development is equally complex because it requires that millions to billions (depending on the species) of neurons assemble in distinct layers and connect with exquisite precision to perform complicated information processing operations. During embryonic development, formation of the cerebral cortex involves the migration of excitatory neurons generated in the ventricular zone toward the cortical plate, where they establish their final position in six well-defined horizontal layers consisting of different types of neurons and architecture. Along this migratory phase, developing neurons undergo a morphological transition from multipolar shape to bipolar morphology. Bipolar neurons exhibit faster locomotion, quickly reaching their final destination. On page 313 of this issue, Ohtaka-Maruyama et al. (1) reveal that this important switch to bipolar neurons is influenced by glutamate release from neurons located at the subplate, just beneath the cortical plate. Subplate neurons trigger this transformation by making transient synaptic contacts with multipolar neurons in transit to the cortical laminae. Understanding this process is important because disruption of neocortical migration results in several human neuro-developmental diseases.
Fil: Schinder, Alejandro Fabián. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina
Fil: Lanuza, Guillermo Marcos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina - Materia
- Neuronal migration
- Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/91109
Ver los metadatos del registro completo
id |
CONICETDig_579529d8724d348ddeb6f46d2b97763e |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/91109 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Whispering neurons fuel cortical highwaysSchinder, Alejandro FabiánLanuza, Guillermo MarcosNeuronal migrationhttps://purl.org/becyt/ford/3.5https://purl.org/becyt/ford/3Synaptic communication accelerates neuronal migration in the developing brain. The mammalian neocortex is one of the most intricate entities found in nature, both in terms of structure and function. It is the brain region responsible for the execution of high-order functions, including sensory perception, motor control, cognition, and speech. Its development is equally complex because it requires that millions to billions (depending on the species) of neurons assemble in distinct layers and connect with exquisite precision to perform complicated information processing operations. During embryonic development, formation of the cerebral cortex involves the migration of excitatory neurons generated in the ventricular zone toward the cortical plate, where they establish their final position in six well-defined horizontal layers consisting of different types of neurons and architecture. Along this migratory phase, developing neurons undergo a morphological transition from multipolar shape to bipolar morphology. Bipolar neurons exhibit faster locomotion, quickly reaching their final destination. On page 313 of this issue, Ohtaka-Maruyama et al. (1) reveal that this important switch to bipolar neurons is influenced by glutamate release from neurons located at the subplate, just beneath the cortical plate. Subplate neurons trigger this transformation by making transient synaptic contacts with multipolar neurons in transit to the cortical laminae. Understanding this process is important because disruption of neocortical migration results in several human neuro-developmental diseases.Fil: Schinder, Alejandro Fabián. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Lanuza, Guillermo Marcos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaAmerican Association for the Advancement of Science2018-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/91109Schinder, Alejandro Fabián; Lanuza, Guillermo Marcos; Whispering neurons fuel cortical highways; American Association for the Advancement of Science; Science; 360; 6386; 4-2018; 265-2660036-8075CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1126/science.aat4587info:eu-repo/semantics/altIdentifier/url/https://science.sciencemag.org/content/360/6386/265info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:33:34Zoai:ri.conicet.gov.ar:11336/91109instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:33:34.361CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Whispering neurons fuel cortical highways |
title |
Whispering neurons fuel cortical highways |
spellingShingle |
Whispering neurons fuel cortical highways Schinder, Alejandro Fabián Neuronal migration |
title_short |
Whispering neurons fuel cortical highways |
title_full |
Whispering neurons fuel cortical highways |
title_fullStr |
Whispering neurons fuel cortical highways |
title_full_unstemmed |
Whispering neurons fuel cortical highways |
title_sort |
Whispering neurons fuel cortical highways |
dc.creator.none.fl_str_mv |
Schinder, Alejandro Fabián Lanuza, Guillermo Marcos |
author |
Schinder, Alejandro Fabián |
author_facet |
Schinder, Alejandro Fabián Lanuza, Guillermo Marcos |
author_role |
author |
author2 |
Lanuza, Guillermo Marcos |
author2_role |
author |
dc.subject.none.fl_str_mv |
Neuronal migration |
topic |
Neuronal migration |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/3.5 https://purl.org/becyt/ford/3 |
dc.description.none.fl_txt_mv |
Synaptic communication accelerates neuronal migration in the developing brain. The mammalian neocortex is one of the most intricate entities found in nature, both in terms of structure and function. It is the brain region responsible for the execution of high-order functions, including sensory perception, motor control, cognition, and speech. Its development is equally complex because it requires that millions to billions (depending on the species) of neurons assemble in distinct layers and connect with exquisite precision to perform complicated information processing operations. During embryonic development, formation of the cerebral cortex involves the migration of excitatory neurons generated in the ventricular zone toward the cortical plate, where they establish their final position in six well-defined horizontal layers consisting of different types of neurons and architecture. Along this migratory phase, developing neurons undergo a morphological transition from multipolar shape to bipolar morphology. Bipolar neurons exhibit faster locomotion, quickly reaching their final destination. On page 313 of this issue, Ohtaka-Maruyama et al. (1) reveal that this important switch to bipolar neurons is influenced by glutamate release from neurons located at the subplate, just beneath the cortical plate. Subplate neurons trigger this transformation by making transient synaptic contacts with multipolar neurons in transit to the cortical laminae. Understanding this process is important because disruption of neocortical migration results in several human neuro-developmental diseases. Fil: Schinder, Alejandro Fabián. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina Fil: Lanuza, Guillermo Marcos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina |
description |
Synaptic communication accelerates neuronal migration in the developing brain. The mammalian neocortex is one of the most intricate entities found in nature, both in terms of structure and function. It is the brain region responsible for the execution of high-order functions, including sensory perception, motor control, cognition, and speech. Its development is equally complex because it requires that millions to billions (depending on the species) of neurons assemble in distinct layers and connect with exquisite precision to perform complicated information processing operations. During embryonic development, formation of the cerebral cortex involves the migration of excitatory neurons generated in the ventricular zone toward the cortical plate, where they establish their final position in six well-defined horizontal layers consisting of different types of neurons and architecture. Along this migratory phase, developing neurons undergo a morphological transition from multipolar shape to bipolar morphology. Bipolar neurons exhibit faster locomotion, quickly reaching their final destination. On page 313 of this issue, Ohtaka-Maruyama et al. (1) reveal that this important switch to bipolar neurons is influenced by glutamate release from neurons located at the subplate, just beneath the cortical plate. Subplate neurons trigger this transformation by making transient synaptic contacts with multipolar neurons in transit to the cortical laminae. Understanding this process is important because disruption of neocortical migration results in several human neuro-developmental diseases. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/91109 Schinder, Alejandro Fabián; Lanuza, Guillermo Marcos; Whispering neurons fuel cortical highways; American Association for the Advancement of Science; Science; 360; 6386; 4-2018; 265-266 0036-8075 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/91109 |
identifier_str_mv |
Schinder, Alejandro Fabián; Lanuza, Guillermo Marcos; Whispering neurons fuel cortical highways; American Association for the Advancement of Science; Science; 360; 6386; 4-2018; 265-266 0036-8075 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1126/science.aat4587 info:eu-repo/semantics/altIdentifier/url/https://science.sciencemag.org/content/360/6386/265 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Association for the Advancement of Science |
publisher.none.fl_str_mv |
American Association for the Advancement of Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613032319123456 |
score |
13.070432 |