Input normalization by global feedforward inhibition expands cortical dynamic range

Autores
Pouille, Frédéric; Marin Burgin, Antonia; Adesnik, Hillel; Atallah, Bassam V.; Scanziani, Massimo
Año de publicación
2009
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The cortex is sensitive to weak stimuli, but responds to stronger inputs without saturating. The mechanisms that enable this wide range of operation are not fully understood. We found that the amplitude of excitatory synaptic currents necessary to fire rodent pyramidal cells, the threshold excitatory current, increased with stimulus strength. Consequently, the relative contribution of individual afferents in firing a neuron was inversely proportional to the total number of active afferents. Feedforward inhibition, acting homogeneously across pyramidal cells, ensured that threshold excitatory currents increased with stimulus strength. In contrast, heterogeneities in the distribution of excitatory currents in the neuronal population determined the specific set of pyramidal cells recruited. Together, these mechanisms expand the range of afferent input strengths that neuronal populations can represent.
Fil: Pouille, Frédéric. University Of California. Department Of Neurobiology; Estados Unidos
Fil: Marin Burgin, Antonia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina. University Of California. Department Of Neurobiology; Estados Unidos
Fil: Adesnik, Hillel. University Of California. Department Of Neurobiology; Estados Unidos
Fil: Atallah, Bassam V.. University Of California. Department Of Neurobiology; Estados Unidos
Fil: Scanziani, Massimo. University Of California. Department Of Neurobiology; Estados Unidos
Materia
Neuronal Circuits
Hippocampus
Excitation-Inhibition
Electrophysiology
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/20646

id CONICETDig_22170445d4b34bf4b43117908e45ed44
oai_identifier_str oai:ri.conicet.gov.ar:11336/20646
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Input normalization by global feedforward inhibition expands cortical dynamic rangePouille, FrédéricMarin Burgin, AntoniaAdesnik, HillelAtallah, Bassam V.Scanziani, MassimoNeuronal CircuitsHippocampusExcitation-InhibitionElectrophysiologyhttps://purl.org/becyt/ford/3.1https://purl.org/becyt/ford/3The cortex is sensitive to weak stimuli, but responds to stronger inputs without saturating. The mechanisms that enable this wide range of operation are not fully understood. We found that the amplitude of excitatory synaptic currents necessary to fire rodent pyramidal cells, the threshold excitatory current, increased with stimulus strength. Consequently, the relative contribution of individual afferents in firing a neuron was inversely proportional to the total number of active afferents. Feedforward inhibition, acting homogeneously across pyramidal cells, ensured that threshold excitatory currents increased with stimulus strength. In contrast, heterogeneities in the distribution of excitatory currents in the neuronal population determined the specific set of pyramidal cells recruited. Together, these mechanisms expand the range of afferent input strengths that neuronal populations can represent.Fil: Pouille, Frédéric. University Of California. Department Of Neurobiology; Estados UnidosFil: Marin Burgin, Antonia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina. University Of California. Department Of Neurobiology; Estados UnidosFil: Adesnik, Hillel. University Of California. Department Of Neurobiology; Estados UnidosFil: Atallah, Bassam V.. University Of California. Department Of Neurobiology; Estados UnidosFil: Scanziani, Massimo. University Of California. Department Of Neurobiology; Estados UnidosNature Publishing Group2009-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/20646Pouille, Frédéric; Marin Burgin, Antonia; Adesnik, Hillel; Atallah, Bassam V.; Scanziani, Massimo; Input normalization by global feedforward inhibition expands cortical dynamic range; Nature Publishing Group; Nature Neuroscience.; 12; 12; 11-2009; 1577-15851097-62561546-1726CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.nature.com/neuro/journal/v12/n12/full/nn.2441.htmlinfo:eu-repo/semantics/altIdentifier/doi/10.1038/nn.2441info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:41:51Zoai:ri.conicet.gov.ar:11336/20646instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:41:52.061CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Input normalization by global feedforward inhibition expands cortical dynamic range
title Input normalization by global feedforward inhibition expands cortical dynamic range
spellingShingle Input normalization by global feedforward inhibition expands cortical dynamic range
Pouille, Frédéric
Neuronal Circuits
Hippocampus
Excitation-Inhibition
Electrophysiology
title_short Input normalization by global feedforward inhibition expands cortical dynamic range
title_full Input normalization by global feedforward inhibition expands cortical dynamic range
title_fullStr Input normalization by global feedforward inhibition expands cortical dynamic range
title_full_unstemmed Input normalization by global feedforward inhibition expands cortical dynamic range
title_sort Input normalization by global feedforward inhibition expands cortical dynamic range
dc.creator.none.fl_str_mv Pouille, Frédéric
Marin Burgin, Antonia
Adesnik, Hillel
Atallah, Bassam V.
Scanziani, Massimo
author Pouille, Frédéric
author_facet Pouille, Frédéric
Marin Burgin, Antonia
Adesnik, Hillel
Atallah, Bassam V.
Scanziani, Massimo
author_role author
author2 Marin Burgin, Antonia
Adesnik, Hillel
Atallah, Bassam V.
Scanziani, Massimo
author2_role author
author
author
author
dc.subject.none.fl_str_mv Neuronal Circuits
Hippocampus
Excitation-Inhibition
Electrophysiology
topic Neuronal Circuits
Hippocampus
Excitation-Inhibition
Electrophysiology
purl_subject.fl_str_mv https://purl.org/becyt/ford/3.1
https://purl.org/becyt/ford/3
dc.description.none.fl_txt_mv The cortex is sensitive to weak stimuli, but responds to stronger inputs without saturating. The mechanisms that enable this wide range of operation are not fully understood. We found that the amplitude of excitatory synaptic currents necessary to fire rodent pyramidal cells, the threshold excitatory current, increased with stimulus strength. Consequently, the relative contribution of individual afferents in firing a neuron was inversely proportional to the total number of active afferents. Feedforward inhibition, acting homogeneously across pyramidal cells, ensured that threshold excitatory currents increased with stimulus strength. In contrast, heterogeneities in the distribution of excitatory currents in the neuronal population determined the specific set of pyramidal cells recruited. Together, these mechanisms expand the range of afferent input strengths that neuronal populations can represent.
Fil: Pouille, Frédéric. University Of California. Department Of Neurobiology; Estados Unidos
Fil: Marin Burgin, Antonia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina. University Of California. Department Of Neurobiology; Estados Unidos
Fil: Adesnik, Hillel. University Of California. Department Of Neurobiology; Estados Unidos
Fil: Atallah, Bassam V.. University Of California. Department Of Neurobiology; Estados Unidos
Fil: Scanziani, Massimo. University Of California. Department Of Neurobiology; Estados Unidos
description The cortex is sensitive to weak stimuli, but responds to stronger inputs without saturating. The mechanisms that enable this wide range of operation are not fully understood. We found that the amplitude of excitatory synaptic currents necessary to fire rodent pyramidal cells, the threshold excitatory current, increased with stimulus strength. Consequently, the relative contribution of individual afferents in firing a neuron was inversely proportional to the total number of active afferents. Feedforward inhibition, acting homogeneously across pyramidal cells, ensured that threshold excitatory currents increased with stimulus strength. In contrast, heterogeneities in the distribution of excitatory currents in the neuronal population determined the specific set of pyramidal cells recruited. Together, these mechanisms expand the range of afferent input strengths that neuronal populations can represent.
publishDate 2009
dc.date.none.fl_str_mv 2009-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/20646
Pouille, Frédéric; Marin Burgin, Antonia; Adesnik, Hillel; Atallah, Bassam V.; Scanziani, Massimo; Input normalization by global feedforward inhibition expands cortical dynamic range; Nature Publishing Group; Nature Neuroscience.; 12; 12; 11-2009; 1577-1585
1097-6256
1546-1726
CONICET Digital
CONICET
url http://hdl.handle.net/11336/20646
identifier_str_mv Pouille, Frédéric; Marin Burgin, Antonia; Adesnik, Hillel; Atallah, Bassam V.; Scanziani, Massimo; Input normalization by global feedforward inhibition expands cortical dynamic range; Nature Publishing Group; Nature Neuroscience.; 12; 12; 11-2009; 1577-1585
1097-6256
1546-1726
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.nature.com/neuro/journal/v12/n12/full/nn.2441.html
info:eu-repo/semantics/altIdentifier/doi/10.1038/nn.2441
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Nature Publishing Group
publisher.none.fl_str_mv Nature Publishing Group
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613320994193408
score 13.070432