Input normalization by global feedforward inhibition expands cortical dynamic range
- Autores
- Pouille, Frédéric; Marin Burgin, Antonia; Adesnik, Hillel; Atallah, Bassam V.; Scanziani, Massimo
- Año de publicación
- 2009
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The cortex is sensitive to weak stimuli, but responds to stronger inputs without saturating. The mechanisms that enable this wide range of operation are not fully understood. We found that the amplitude of excitatory synaptic currents necessary to fire rodent pyramidal cells, the threshold excitatory current, increased with stimulus strength. Consequently, the relative contribution of individual afferents in firing a neuron was inversely proportional to the total number of active afferents. Feedforward inhibition, acting homogeneously across pyramidal cells, ensured that threshold excitatory currents increased with stimulus strength. In contrast, heterogeneities in the distribution of excitatory currents in the neuronal population determined the specific set of pyramidal cells recruited. Together, these mechanisms expand the range of afferent input strengths that neuronal populations can represent.
Fil: Pouille, Frédéric. University Of California. Department Of Neurobiology; Estados Unidos
Fil: Marin Burgin, Antonia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina. University Of California. Department Of Neurobiology; Estados Unidos
Fil: Adesnik, Hillel. University Of California. Department Of Neurobiology; Estados Unidos
Fil: Atallah, Bassam V.. University Of California. Department Of Neurobiology; Estados Unidos
Fil: Scanziani, Massimo. University Of California. Department Of Neurobiology; Estados Unidos - Materia
-
Neuronal Circuits
Hippocampus
Excitation-Inhibition
Electrophysiology - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/20646
Ver los metadatos del registro completo
id |
CONICETDig_22170445d4b34bf4b43117908e45ed44 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/20646 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Input normalization by global feedforward inhibition expands cortical dynamic rangePouille, FrédéricMarin Burgin, AntoniaAdesnik, HillelAtallah, Bassam V.Scanziani, MassimoNeuronal CircuitsHippocampusExcitation-InhibitionElectrophysiologyhttps://purl.org/becyt/ford/3.1https://purl.org/becyt/ford/3The cortex is sensitive to weak stimuli, but responds to stronger inputs without saturating. The mechanisms that enable this wide range of operation are not fully understood. We found that the amplitude of excitatory synaptic currents necessary to fire rodent pyramidal cells, the threshold excitatory current, increased with stimulus strength. Consequently, the relative contribution of individual afferents in firing a neuron was inversely proportional to the total number of active afferents. Feedforward inhibition, acting homogeneously across pyramidal cells, ensured that threshold excitatory currents increased with stimulus strength. In contrast, heterogeneities in the distribution of excitatory currents in the neuronal population determined the specific set of pyramidal cells recruited. Together, these mechanisms expand the range of afferent input strengths that neuronal populations can represent.Fil: Pouille, Frédéric. University Of California. Department Of Neurobiology; Estados UnidosFil: Marin Burgin, Antonia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina. University Of California. Department Of Neurobiology; Estados UnidosFil: Adesnik, Hillel. University Of California. Department Of Neurobiology; Estados UnidosFil: Atallah, Bassam V.. University Of California. Department Of Neurobiology; Estados UnidosFil: Scanziani, Massimo. University Of California. Department Of Neurobiology; Estados UnidosNature Publishing Group2009-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/20646Pouille, Frédéric; Marin Burgin, Antonia; Adesnik, Hillel; Atallah, Bassam V.; Scanziani, Massimo; Input normalization by global feedforward inhibition expands cortical dynamic range; Nature Publishing Group; Nature Neuroscience.; 12; 12; 11-2009; 1577-15851097-62561546-1726CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.nature.com/neuro/journal/v12/n12/full/nn.2441.htmlinfo:eu-repo/semantics/altIdentifier/doi/10.1038/nn.2441info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:41:51Zoai:ri.conicet.gov.ar:11336/20646instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:41:52.061CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Input normalization by global feedforward inhibition expands cortical dynamic range |
title |
Input normalization by global feedforward inhibition expands cortical dynamic range |
spellingShingle |
Input normalization by global feedforward inhibition expands cortical dynamic range Pouille, Frédéric Neuronal Circuits Hippocampus Excitation-Inhibition Electrophysiology |
title_short |
Input normalization by global feedforward inhibition expands cortical dynamic range |
title_full |
Input normalization by global feedforward inhibition expands cortical dynamic range |
title_fullStr |
Input normalization by global feedforward inhibition expands cortical dynamic range |
title_full_unstemmed |
Input normalization by global feedforward inhibition expands cortical dynamic range |
title_sort |
Input normalization by global feedforward inhibition expands cortical dynamic range |
dc.creator.none.fl_str_mv |
Pouille, Frédéric Marin Burgin, Antonia Adesnik, Hillel Atallah, Bassam V. Scanziani, Massimo |
author |
Pouille, Frédéric |
author_facet |
Pouille, Frédéric Marin Burgin, Antonia Adesnik, Hillel Atallah, Bassam V. Scanziani, Massimo |
author_role |
author |
author2 |
Marin Burgin, Antonia Adesnik, Hillel Atallah, Bassam V. Scanziani, Massimo |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Neuronal Circuits Hippocampus Excitation-Inhibition Electrophysiology |
topic |
Neuronal Circuits Hippocampus Excitation-Inhibition Electrophysiology |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/3.1 https://purl.org/becyt/ford/3 |
dc.description.none.fl_txt_mv |
The cortex is sensitive to weak stimuli, but responds to stronger inputs without saturating. The mechanisms that enable this wide range of operation are not fully understood. We found that the amplitude of excitatory synaptic currents necessary to fire rodent pyramidal cells, the threshold excitatory current, increased with stimulus strength. Consequently, the relative contribution of individual afferents in firing a neuron was inversely proportional to the total number of active afferents. Feedforward inhibition, acting homogeneously across pyramidal cells, ensured that threshold excitatory currents increased with stimulus strength. In contrast, heterogeneities in the distribution of excitatory currents in the neuronal population determined the specific set of pyramidal cells recruited. Together, these mechanisms expand the range of afferent input strengths that neuronal populations can represent. Fil: Pouille, Frédéric. University Of California. Department Of Neurobiology; Estados Unidos Fil: Marin Burgin, Antonia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina. University Of California. Department Of Neurobiology; Estados Unidos Fil: Adesnik, Hillel. University Of California. Department Of Neurobiology; Estados Unidos Fil: Atallah, Bassam V.. University Of California. Department Of Neurobiology; Estados Unidos Fil: Scanziani, Massimo. University Of California. Department Of Neurobiology; Estados Unidos |
description |
The cortex is sensitive to weak stimuli, but responds to stronger inputs without saturating. The mechanisms that enable this wide range of operation are not fully understood. We found that the amplitude of excitatory synaptic currents necessary to fire rodent pyramidal cells, the threshold excitatory current, increased with stimulus strength. Consequently, the relative contribution of individual afferents in firing a neuron was inversely proportional to the total number of active afferents. Feedforward inhibition, acting homogeneously across pyramidal cells, ensured that threshold excitatory currents increased with stimulus strength. In contrast, heterogeneities in the distribution of excitatory currents in the neuronal population determined the specific set of pyramidal cells recruited. Together, these mechanisms expand the range of afferent input strengths that neuronal populations can represent. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/20646 Pouille, Frédéric; Marin Burgin, Antonia; Adesnik, Hillel; Atallah, Bassam V.; Scanziani, Massimo; Input normalization by global feedforward inhibition expands cortical dynamic range; Nature Publishing Group; Nature Neuroscience.; 12; 12; 11-2009; 1577-1585 1097-6256 1546-1726 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/20646 |
identifier_str_mv |
Pouille, Frédéric; Marin Burgin, Antonia; Adesnik, Hillel; Atallah, Bassam V.; Scanziani, Massimo; Input normalization by global feedforward inhibition expands cortical dynamic range; Nature Publishing Group; Nature Neuroscience.; 12; 12; 11-2009; 1577-1585 1097-6256 1546-1726 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.nature.com/neuro/journal/v12/n12/full/nn.2441.html info:eu-repo/semantics/altIdentifier/doi/10.1038/nn.2441 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Nature Publishing Group |
publisher.none.fl_str_mv |
Nature Publishing Group |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613320994193408 |
score |
13.070432 |