Generation of random latin squares step by step and graphically
- Autores
- Gallego Sagastume, Ignacio
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- In order to generate random Latin squares of order 256, the Jacobson and Matthews’ algorithm has been implemented in Java. Clear and efficient data structures (for squares and incidence cubes) have been modeled and the ±1-moves of their method have been implemented. This ensures that, in a polynomial number of steps (O(n3)), the algorithm finishes with a Latin square as a result that is approximately uniformly distributed. As an additional contribution to the subject, a step-by-step graphical generation using OpenGL (Open Graphic Library) is provided, which could be used to explain the algorithm, understand it or simply draw the resulting Latin squares as incidence cubes. The main goal of the present work is to document the implementation of the algorithm and make it public on the Internet, since no standard implementation is freely available.
III Workshop de Seguridad Informática (WSI)
Red de Universidades con Carreras de Informática (RedUNCI) - Materia
-
Ciencias Informáticas
latin squares generation
random
Java implementation
Jacobson Matthews
OpenGL - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/42155
Ver los metadatos del registro completo
id |
SEDICI_4506cbc23d01d0bd244cb2fb96bcfcd8 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/42155 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Generation of random latin squares step by step and graphicallyGallego Sagastume, IgnacioCiencias Informáticaslatin squares generationrandomJava implementationJacobson MatthewsOpenGLIn order to generate random Latin squares of order 256, the Jacobson and Matthews’ algorithm has been implemented in Java. Clear and efficient data structures (for squares and incidence cubes) have been modeled and the ±1-moves of their method have been implemented. This ensures that, in a polynomial number of steps (O(<i>n</i>3)), the algorithm finishes with a Latin square as a result that is approximately uniformly distributed. As an additional contribution to the subject, a step-by-step graphical generation using OpenGL (Open Graphic Library) is provided, which could be used to explain the algorithm, understand it or simply draw the resulting Latin squares as incidence cubes. The main goal of the present work is to document the implementation of the algorithm and make it public on the Internet, since no standard implementation is freely available.III Workshop de Seguridad Informática (WSI)Red de Universidades con Carreras de Informática (RedUNCI)2014-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/42155enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:01:18Zoai:sedici.unlp.edu.ar:10915/42155Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:01:18.52SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Generation of random latin squares step by step and graphically |
title |
Generation of random latin squares step by step and graphically |
spellingShingle |
Generation of random latin squares step by step and graphically Gallego Sagastume, Ignacio Ciencias Informáticas latin squares generation random Java implementation Jacobson Matthews OpenGL |
title_short |
Generation of random latin squares step by step and graphically |
title_full |
Generation of random latin squares step by step and graphically |
title_fullStr |
Generation of random latin squares step by step and graphically |
title_full_unstemmed |
Generation of random latin squares step by step and graphically |
title_sort |
Generation of random latin squares step by step and graphically |
dc.creator.none.fl_str_mv |
Gallego Sagastume, Ignacio |
author |
Gallego Sagastume, Ignacio |
author_facet |
Gallego Sagastume, Ignacio |
author_role |
author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas latin squares generation random Java implementation Jacobson Matthews OpenGL |
topic |
Ciencias Informáticas latin squares generation random Java implementation Jacobson Matthews OpenGL |
dc.description.none.fl_txt_mv |
In order to generate random Latin squares of order 256, the Jacobson and Matthews’ algorithm has been implemented in Java. Clear and efficient data structures (for squares and incidence cubes) have been modeled and the ±1-moves of their method have been implemented. This ensures that, in a polynomial number of steps (O(<i>n</i>3)), the algorithm finishes with a Latin square as a result that is approximately uniformly distributed. As an additional contribution to the subject, a step-by-step graphical generation using OpenGL (Open Graphic Library) is provided, which could be used to explain the algorithm, understand it or simply draw the resulting Latin squares as incidence cubes. The main goal of the present work is to document the implementation of the algorithm and make it public on the Internet, since no standard implementation is freely available. III Workshop de Seguridad Informática (WSI) Red de Universidades con Carreras de Informática (RedUNCI) |
description |
In order to generate random Latin squares of order 256, the Jacobson and Matthews’ algorithm has been implemented in Java. Clear and efficient data structures (for squares and incidence cubes) have been modeled and the ±1-moves of their method have been implemented. This ensures that, in a polynomial number of steps (O(<i>n</i>3)), the algorithm finishes with a Latin square as a result that is approximately uniformly distributed. As an additional contribution to the subject, a step-by-step graphical generation using OpenGL (Open Graphic Library) is provided, which could be used to explain the algorithm, understand it or simply draw the resulting Latin squares as incidence cubes. The main goal of the present work is to document the implementation of the algorithm and make it public on the Internet, since no standard implementation is freely available. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/42155 |
url |
http://sedici.unlp.edu.ar/handle/10915/42155 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844615879667482624 |
score |
13.070432 |