Dynamical sampling
- Autores
- Aldroubi, A.; Cabrelli, Carlos; Molter, Ursula Maria; Tang, S.
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let Y={f(i),Af(i),…,Ali f(i):i∈Ω}, where A is a bounded operator on ℓ2(I). The problem under consideration is to find necessary and sufficient conditions on A,Ω,{li:i∈Ω} in order to recover any f∈ℓ2(I) from the measurements Y. This is the so-called dynamical sampling problem in which we seek to recover a function f by combining coarse samples of f and its futures states Alf. We completely solve this problem in finite dimensional spaces, and for a large class of self adjoint operators in infinite dimensional spaces. In the latter case, although Y can be complete, using the Müntz–Szász Theorem we show it can never be a basis. We can also show that, when Ω is finite, Y is not a frame except for some very special cases. The existence of these special cases is derived from Carleson's Theorem for interpolating sequences in the Hardy space H2(D). Finally, using the recently proved Kadison–Singer/Feichtinger theorem we show that the set obtained by normalizing the vectors of Y can never be a frame when Ω is finite.
Fil: Aldroubi, A.. Vanderbilt University; Estados Unidos
Fil: Cabrelli, Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Molter, Ursula Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Tang, S.. Vanderbilt University; Estados Unidos - Materia
-
Carleson'S Theorem
Feichtinger Conjecture
Frames
Müntz–Szász Theorem
Reconstruction
Sampling Theory
Sub-Sampling - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/55536
Ver los metadatos del registro completo
id |
CONICETDig_56d13b0613b7a8020a7865461ed20e18 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/55536 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Dynamical samplingAldroubi, A.Cabrelli, CarlosMolter, Ursula MariaTang, S.Carleson'S TheoremFeichtinger ConjectureFramesMüntz–Szász TheoremReconstructionSampling TheorySub-Samplinghttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let Y={f(i),Af(i),…,Ali f(i):i∈Ω}, where A is a bounded operator on ℓ2(I). The problem under consideration is to find necessary and sufficient conditions on A,Ω,{li:i∈Ω} in order to recover any f∈ℓ2(I) from the measurements Y. This is the so-called dynamical sampling problem in which we seek to recover a function f by combining coarse samples of f and its futures states Alf. We completely solve this problem in finite dimensional spaces, and for a large class of self adjoint operators in infinite dimensional spaces. In the latter case, although Y can be complete, using the Müntz–Szász Theorem we show it can never be a basis. We can also show that, when Ω is finite, Y is not a frame except for some very special cases. The existence of these special cases is derived from Carleson's Theorem for interpolating sequences in the Hardy space H2(D). Finally, using the recently proved Kadison–Singer/Feichtinger theorem we show that the set obtained by normalizing the vectors of Y can never be a frame when Ω is finite.Fil: Aldroubi, A.. Vanderbilt University; Estados UnidosFil: Cabrelli, Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Molter, Ursula Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Tang, S.. Vanderbilt University; Estados UnidosAcademic Press Inc Elsevier Science2017-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/55536Aldroubi, A.; Cabrelli, Carlos; Molter, Ursula Maria; Tang, S.; Dynamical sampling; Academic Press Inc Elsevier Science; Applied And Computational Harmonic Analysis; 42; 3; 5-2017; 378-4011063-5203CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1063520315001177info:eu-repo/semantics/altIdentifier/doi/10.1016/j.acha.2015.08.014info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:47:44Zoai:ri.conicet.gov.ar:11336/55536instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:47:44.713CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Dynamical sampling |
title |
Dynamical sampling |
spellingShingle |
Dynamical sampling Aldroubi, A. Carleson'S Theorem Feichtinger Conjecture Frames Müntz–Szász Theorem Reconstruction Sampling Theory Sub-Sampling |
title_short |
Dynamical sampling |
title_full |
Dynamical sampling |
title_fullStr |
Dynamical sampling |
title_full_unstemmed |
Dynamical sampling |
title_sort |
Dynamical sampling |
dc.creator.none.fl_str_mv |
Aldroubi, A. Cabrelli, Carlos Molter, Ursula Maria Tang, S. |
author |
Aldroubi, A. |
author_facet |
Aldroubi, A. Cabrelli, Carlos Molter, Ursula Maria Tang, S. |
author_role |
author |
author2 |
Cabrelli, Carlos Molter, Ursula Maria Tang, S. |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Carleson'S Theorem Feichtinger Conjecture Frames Müntz–Szász Theorem Reconstruction Sampling Theory Sub-Sampling |
topic |
Carleson'S Theorem Feichtinger Conjecture Frames Müntz–Szász Theorem Reconstruction Sampling Theory Sub-Sampling |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Let Y={f(i),Af(i),…,Ali f(i):i∈Ω}, where A is a bounded operator on ℓ2(I). The problem under consideration is to find necessary and sufficient conditions on A,Ω,{li:i∈Ω} in order to recover any f∈ℓ2(I) from the measurements Y. This is the so-called dynamical sampling problem in which we seek to recover a function f by combining coarse samples of f and its futures states Alf. We completely solve this problem in finite dimensional spaces, and for a large class of self adjoint operators in infinite dimensional spaces. In the latter case, although Y can be complete, using the Müntz–Szász Theorem we show it can never be a basis. We can also show that, when Ω is finite, Y is not a frame except for some very special cases. The existence of these special cases is derived from Carleson's Theorem for interpolating sequences in the Hardy space H2(D). Finally, using the recently proved Kadison–Singer/Feichtinger theorem we show that the set obtained by normalizing the vectors of Y can never be a frame when Ω is finite. Fil: Aldroubi, A.. Vanderbilt University; Estados Unidos Fil: Cabrelli, Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Molter, Ursula Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Tang, S.. Vanderbilt University; Estados Unidos |
description |
Let Y={f(i),Af(i),…,Ali f(i):i∈Ω}, where A is a bounded operator on ℓ2(I). The problem under consideration is to find necessary and sufficient conditions on A,Ω,{li:i∈Ω} in order to recover any f∈ℓ2(I) from the measurements Y. This is the so-called dynamical sampling problem in which we seek to recover a function f by combining coarse samples of f and its futures states Alf. We completely solve this problem in finite dimensional spaces, and for a large class of self adjoint operators in infinite dimensional spaces. In the latter case, although Y can be complete, using the Müntz–Szász Theorem we show it can never be a basis. We can also show that, when Ω is finite, Y is not a frame except for some very special cases. The existence of these special cases is derived from Carleson's Theorem for interpolating sequences in the Hardy space H2(D). Finally, using the recently proved Kadison–Singer/Feichtinger theorem we show that the set obtained by normalizing the vectors of Y can never be a frame when Ω is finite. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/55536 Aldroubi, A.; Cabrelli, Carlos; Molter, Ursula Maria; Tang, S.; Dynamical sampling; Academic Press Inc Elsevier Science; Applied And Computational Harmonic Analysis; 42; 3; 5-2017; 378-401 1063-5203 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/55536 |
identifier_str_mv |
Aldroubi, A.; Cabrelli, Carlos; Molter, Ursula Maria; Tang, S.; Dynamical sampling; Academic Press Inc Elsevier Science; Applied And Computational Harmonic Analysis; 42; 3; 5-2017; 378-401 1063-5203 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1063520315001177 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.acha.2015.08.014 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613487016280064 |
score |
13.070432 |