Simplified tea classification based on a reduced chemical composition profile via successive projections algorithm linear discriminant analysis (SPA-LDA)
- Autores
- Gonçalves Dias Diniz, Paulo Henrique; Pistonesi, Marcelo Fabian; Álvarez, Mónica Beatriz; Fernández Band, Beatriz Susana; Ugulino de Araújo, Mário César
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this study, several possible approaches for simultaneous discrimination of teas based on a linear discriminant analysis with variables selected by the successive projections algorithm (SPA-LDA), featuring selection from the chemical composition according to variety (black or green tea) and geographical origin (Argentina or Sri Lanka), are explored. Chemical composition (moisture, ash, caffeine, fluoride, polyphenols, and 15 elements from both tea leaves and infusions) was used as input data for identification of the differentiating characteristics of tea samples. Thus, a strategy that allows tea discrimination using a reduced number of chemical parameters was developed. SIMCA (softindependent modeling of class analogy) and PLS-DA (partial least squares-discriminant analysis) were used along with SPA-LDA for comparison. The elemental fingerprint (chemical signature) can be used for identifying the variety and origin of the tea, and SPA-LDA provided the most successful result (100% correct classification), despite having selected just three chemical parameters (namely K, Al, and Mg). The result is extremely positive from the viewpoint of chemical analyses, because quantifications made using fewer elements naturally provide simpler, faster and less expensive methods.
Fil: Gonçalves Dias Diniz, Paulo Henrique. Universidade Estadual Da Paraíba; Brasil
Fil: Pistonesi, Marcelo Fabian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina
Fil: Álvarez, Mónica Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina
Fil: Fernández Band, Beatriz Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina
Fil: Ugulino de Araújo, Mário César. Universidade Federal Da Paraíba; Brasil - Materia
-
Camellia Sinensis
Tea Leaves
Tea Infusions
Food Composition
Food Analysis
Elemental Fingerprint
Classification
Spa-Lda Feature Selection - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/40474
Ver los metadatos del registro completo
id |
CONICETDig_5692f820b5917e5d9a7655651634790a |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/40474 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Simplified tea classification based on a reduced chemical composition profile via successive projections algorithm linear discriminant analysis (SPA-LDA)Gonçalves Dias Diniz, Paulo HenriquePistonesi, Marcelo FabianÁlvarez, Mónica BeatrizFernández Band, Beatriz SusanaUgulino de Araújo, Mário CésarCamellia SinensisTea LeavesTea InfusionsFood CompositionFood AnalysisElemental FingerprintClassificationSpa-Lda Feature Selectionhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1In this study, several possible approaches for simultaneous discrimination of teas based on a linear discriminant analysis with variables selected by the successive projections algorithm (SPA-LDA), featuring selection from the chemical composition according to variety (black or green tea) and geographical origin (Argentina or Sri Lanka), are explored. Chemical composition (moisture, ash, caffeine, fluoride, polyphenols, and 15 elements from both tea leaves and infusions) was used as input data for identification of the differentiating characteristics of tea samples. Thus, a strategy that allows tea discrimination using a reduced number of chemical parameters was developed. SIMCA (softindependent modeling of class analogy) and PLS-DA (partial least squares-discriminant analysis) were used along with SPA-LDA for comparison. The elemental fingerprint (chemical signature) can be used for identifying the variety and origin of the tea, and SPA-LDA provided the most successful result (100% correct classification), despite having selected just three chemical parameters (namely K, Al, and Mg). The result is extremely positive from the viewpoint of chemical analyses, because quantifications made using fewer elements naturally provide simpler, faster and less expensive methods.Fil: Gonçalves Dias Diniz, Paulo Henrique. Universidade Estadual Da Paraíba; BrasilFil: Pistonesi, Marcelo Fabian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; ArgentinaFil: Álvarez, Mónica Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; ArgentinaFil: Fernández Band, Beatriz Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; ArgentinaFil: Ugulino de Araújo, Mário César. Universidade Federal Da Paraíba; BrasilAcademic Press Inc Elsevier Science2015-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/40474Gonçalves Dias Diniz, Paulo Henrique; Pistonesi, Marcelo Fabian; Álvarez, Mónica Beatriz; Fernández Band, Beatriz Susana; Ugulino de Araújo, Mário César; Simplified tea classification based on a reduced chemical composition profile via successive projections algorithm linear discriminant analysis (SPA-LDA); Academic Press Inc Elsevier Science; Journal Of Food Composition And Analysis; 39; 3-2015; 103-1100889-1575CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jfca.2014.11.012info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0889157514002130info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:15:11Zoai:ri.conicet.gov.ar:11336/40474instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:15:11.627CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Simplified tea classification based on a reduced chemical composition profile via successive projections algorithm linear discriminant analysis (SPA-LDA) |
title |
Simplified tea classification based on a reduced chemical composition profile via successive projections algorithm linear discriminant analysis (SPA-LDA) |
spellingShingle |
Simplified tea classification based on a reduced chemical composition profile via successive projections algorithm linear discriminant analysis (SPA-LDA) Gonçalves Dias Diniz, Paulo Henrique Camellia Sinensis Tea Leaves Tea Infusions Food Composition Food Analysis Elemental Fingerprint Classification Spa-Lda Feature Selection |
title_short |
Simplified tea classification based on a reduced chemical composition profile via successive projections algorithm linear discriminant analysis (SPA-LDA) |
title_full |
Simplified tea classification based on a reduced chemical composition profile via successive projections algorithm linear discriminant analysis (SPA-LDA) |
title_fullStr |
Simplified tea classification based on a reduced chemical composition profile via successive projections algorithm linear discriminant analysis (SPA-LDA) |
title_full_unstemmed |
Simplified tea classification based on a reduced chemical composition profile via successive projections algorithm linear discriminant analysis (SPA-LDA) |
title_sort |
Simplified tea classification based on a reduced chemical composition profile via successive projections algorithm linear discriminant analysis (SPA-LDA) |
dc.creator.none.fl_str_mv |
Gonçalves Dias Diniz, Paulo Henrique Pistonesi, Marcelo Fabian Álvarez, Mónica Beatriz Fernández Band, Beatriz Susana Ugulino de Araújo, Mário César |
author |
Gonçalves Dias Diniz, Paulo Henrique |
author_facet |
Gonçalves Dias Diniz, Paulo Henrique Pistonesi, Marcelo Fabian Álvarez, Mónica Beatriz Fernández Band, Beatriz Susana Ugulino de Araújo, Mário César |
author_role |
author |
author2 |
Pistonesi, Marcelo Fabian Álvarez, Mónica Beatriz Fernández Band, Beatriz Susana Ugulino de Araújo, Mário César |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Camellia Sinensis Tea Leaves Tea Infusions Food Composition Food Analysis Elemental Fingerprint Classification Spa-Lda Feature Selection |
topic |
Camellia Sinensis Tea Leaves Tea Infusions Food Composition Food Analysis Elemental Fingerprint Classification Spa-Lda Feature Selection |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this study, several possible approaches for simultaneous discrimination of teas based on a linear discriminant analysis with variables selected by the successive projections algorithm (SPA-LDA), featuring selection from the chemical composition according to variety (black or green tea) and geographical origin (Argentina or Sri Lanka), are explored. Chemical composition (moisture, ash, caffeine, fluoride, polyphenols, and 15 elements from both tea leaves and infusions) was used as input data for identification of the differentiating characteristics of tea samples. Thus, a strategy that allows tea discrimination using a reduced number of chemical parameters was developed. SIMCA (softindependent modeling of class analogy) and PLS-DA (partial least squares-discriminant analysis) were used along with SPA-LDA for comparison. The elemental fingerprint (chemical signature) can be used for identifying the variety and origin of the tea, and SPA-LDA provided the most successful result (100% correct classification), despite having selected just three chemical parameters (namely K, Al, and Mg). The result is extremely positive from the viewpoint of chemical analyses, because quantifications made using fewer elements naturally provide simpler, faster and less expensive methods. Fil: Gonçalves Dias Diniz, Paulo Henrique. Universidade Estadual Da Paraíba; Brasil Fil: Pistonesi, Marcelo Fabian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina Fil: Álvarez, Mónica Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina Fil: Fernández Band, Beatriz Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina Fil: Ugulino de Araújo, Mário César. Universidade Federal Da Paraíba; Brasil |
description |
In this study, several possible approaches for simultaneous discrimination of teas based on a linear discriminant analysis with variables selected by the successive projections algorithm (SPA-LDA), featuring selection from the chemical composition according to variety (black or green tea) and geographical origin (Argentina or Sri Lanka), are explored. Chemical composition (moisture, ash, caffeine, fluoride, polyphenols, and 15 elements from both tea leaves and infusions) was used as input data for identification of the differentiating characteristics of tea samples. Thus, a strategy that allows tea discrimination using a reduced number of chemical parameters was developed. SIMCA (softindependent modeling of class analogy) and PLS-DA (partial least squares-discriminant analysis) were used along with SPA-LDA for comparison. The elemental fingerprint (chemical signature) can be used for identifying the variety and origin of the tea, and SPA-LDA provided the most successful result (100% correct classification), despite having selected just three chemical parameters (namely K, Al, and Mg). The result is extremely positive from the viewpoint of chemical analyses, because quantifications made using fewer elements naturally provide simpler, faster and less expensive methods. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/40474 Gonçalves Dias Diniz, Paulo Henrique; Pistonesi, Marcelo Fabian; Álvarez, Mónica Beatriz; Fernández Band, Beatriz Susana; Ugulino de Araújo, Mário César; Simplified tea classification based on a reduced chemical composition profile via successive projections algorithm linear discriminant analysis (SPA-LDA); Academic Press Inc Elsevier Science; Journal Of Food Composition And Analysis; 39; 3-2015; 103-110 0889-1575 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/40474 |
identifier_str_mv |
Gonçalves Dias Diniz, Paulo Henrique; Pistonesi, Marcelo Fabian; Álvarez, Mónica Beatriz; Fernández Band, Beatriz Susana; Ugulino de Araújo, Mário César; Simplified tea classification based on a reduced chemical composition profile via successive projections algorithm linear discriminant analysis (SPA-LDA); Academic Press Inc Elsevier Science; Journal Of Food Composition And Analysis; 39; 3-2015; 103-110 0889-1575 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jfca.2014.11.012 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0889157514002130 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083299689103360 |
score |
13.22299 |