A Performance Prediction Module for Workflow Scheduling

Autores
Monge, David A.; Bělohradský, Jiří; García Garino, Carlos; Železný, Filip
Año de publicación
2011
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
Through the years, scientific applications have demanded more powerful and sophisticated computing environments and management techniques. Workflows facilitated the design and management of scientific applications. The complexity of to day's workflows demand a high amount of resources and mechanisms for provisioning them. The execution of scientific workflow applications is a complex task and depends on how the resources are assigned. Scheduling is the name given to the process that assigns computing resources to the tasks comprised in a workflow. This work presents a scheduling algorithm (PPSA) for workflows tightly coupled to a performance prediction module (PEM). A set of experiments was developed for measuring the performance of the algorithm using the information provided by the proposed performance module. The proposed algorithm is compared with an algorithm included in the well-known workflow middlewares Condor DAGMan and ASKALON.
Sociedad Argentina de Informática e Investigación Operativa
Materia
Ciencias Informáticas
Workflow
Scheduling
Performance Prediction
Nonparametric Regression
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/126141

id SEDICI_3a11230c9979924adfc0875a863f1925
oai_identifier_str oai:sedici.unlp.edu.ar:10915/126141
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling A Performance Prediction Module for Workflow SchedulingMonge, David A.Bělohradský, JiříGarcía Garino, CarlosŽelezný, FilipCiencias InformáticasWorkflowSchedulingPerformance PredictionNonparametric RegressionThrough the years, scientific applications have demanded more powerful and sophisticated computing environments and management techniques. Workflows facilitated the design and management of scientific applications. The complexity of to day's workflows demand a high amount of resources and mechanisms for provisioning them. The execution of scientific workflow applications is a complex task and depends on how the resources are assigned. Scheduling is the name given to the process that assigns computing resources to the tasks comprised in a workflow. This work presents a scheduling algorithm (PPSA) for workflows tightly coupled to a performance prediction module (PEM). A set of experiments was developed for measuring the performance of the algorithm using the information provided by the proposed performance module. The proposed algorithm is compared with an algorithm included in the well-known workflow middlewares Condor DAGMan and ASKALON.Sociedad Argentina de Informática e Investigación Operativa2011-08info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf130-144http://sedici.unlp.edu.ar/handle/10915/126141enginfo:eu-repo/semantics/altIdentifier/url/https://40jaiio.sadio.org.ar/sites/default/files/T2011/HPC/1102.pdfinfo:eu-repo/semantics/altIdentifier/issn/1851-9326info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T11:22:16Zoai:sedici.unlp.edu.ar:10915/126141Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 11:22:17.064SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv A Performance Prediction Module for Workflow Scheduling
title A Performance Prediction Module for Workflow Scheduling
spellingShingle A Performance Prediction Module for Workflow Scheduling
Monge, David A.
Ciencias Informáticas
Workflow
Scheduling
Performance Prediction
Nonparametric Regression
title_short A Performance Prediction Module for Workflow Scheduling
title_full A Performance Prediction Module for Workflow Scheduling
title_fullStr A Performance Prediction Module for Workflow Scheduling
title_full_unstemmed A Performance Prediction Module for Workflow Scheduling
title_sort A Performance Prediction Module for Workflow Scheduling
dc.creator.none.fl_str_mv Monge, David A.
Bělohradský, Jiří
García Garino, Carlos
Železný, Filip
author Monge, David A.
author_facet Monge, David A.
Bělohradský, Jiří
García Garino, Carlos
Železný, Filip
author_role author
author2 Bělohradský, Jiří
García Garino, Carlos
Železný, Filip
author2_role author
author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
Workflow
Scheduling
Performance Prediction
Nonparametric Regression
topic Ciencias Informáticas
Workflow
Scheduling
Performance Prediction
Nonparametric Regression
dc.description.none.fl_txt_mv Through the years, scientific applications have demanded more powerful and sophisticated computing environments and management techniques. Workflows facilitated the design and management of scientific applications. The complexity of to day's workflows demand a high amount of resources and mechanisms for provisioning them. The execution of scientific workflow applications is a complex task and depends on how the resources are assigned. Scheduling is the name given to the process that assigns computing resources to the tasks comprised in a workflow. This work presents a scheduling algorithm (PPSA) for workflows tightly coupled to a performance prediction module (PEM). A set of experiments was developed for measuring the performance of the algorithm using the information provided by the proposed performance module. The proposed algorithm is compared with an algorithm included in the well-known workflow middlewares Condor DAGMan and ASKALON.
Sociedad Argentina de Informática e Investigación Operativa
description Through the years, scientific applications have demanded more powerful and sophisticated computing environments and management techniques. Workflows facilitated the design and management of scientific applications. The complexity of to day's workflows demand a high amount of resources and mechanisms for provisioning them. The execution of scientific workflow applications is a complex task and depends on how the resources are assigned. Scheduling is the name given to the process that assigns computing resources to the tasks comprised in a workflow. This work presents a scheduling algorithm (PPSA) for workflows tightly coupled to a performance prediction module (PEM). A set of experiments was developed for measuring the performance of the algorithm using the information provided by the proposed performance module. The proposed algorithm is compared with an algorithm included in the well-known workflow middlewares Condor DAGMan and ASKALON.
publishDate 2011
dc.date.none.fl_str_mv 2011-08
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/126141
url http://sedici.unlp.edu.ar/handle/10915/126141
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://40jaiio.sadio.org.ar/sites/default/files/T2011/HPC/1102.pdf
info:eu-repo/semantics/altIdentifier/issn/1851-9326
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
130-144
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846064279255515136
score 13.22299