Reflected entropy, symmetries and free fermions

Autores
Bueno, Pablo; Casini, Horacio German
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Exploiting the split property of quantum field theories (QFTs), a notion of von Neumann entropy associated to pairs of spatial subregions has been recently proposed both in the holographic context — where it has been argued to be related to the entanglement wedge cross section — and for general QFTs. We argue that the definition of this “reflected entropy” can be canonically generalized in a way which is particularly suitable for orbifold theories — those obtained by restricting the full algebra of operators to those which are neutral under a global symmetry group. This turns out to be given by the full-theory reflected entropy minus an entropy associated to the expectation value of the “twist” operator implementing the symmetry operation. Then we show that the reflected entropy for Gaussian fermion systems can be simply written in terms of correlation functions and we evaluate it numerically for two intervals in the case of a two-dimensional Dirac field as a function of the conformal cross-ratio. Finally, we explain how the aforementioned twist operators can be constructed and we compute the corresponding expectation value and reflected entropy numerically in the case of the ℤ2 bosonic subalgebra of the Dirac field.
Fil: Bueno, Pablo. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
Fil: Casini, Horacio German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
Materia
CONFORMAL FIELD THEORY
GLOBAL SYMMETRIES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/140416

id CONICETDig_5635eac3a06aa41723f6ea94a4144f16
oai_identifier_str oai:ri.conicet.gov.ar:11336/140416
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Reflected entropy, symmetries and free fermionsBueno, PabloCasini, Horacio GermanCONFORMAL FIELD THEORYGLOBAL SYMMETRIEShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Exploiting the split property of quantum field theories (QFTs), a notion of von Neumann entropy associated to pairs of spatial subregions has been recently proposed both in the holographic context — where it has been argued to be related to the entanglement wedge cross section — and for general QFTs. We argue that the definition of this “reflected entropy” can be canonically generalized in a way which is particularly suitable for orbifold theories — those obtained by restricting the full algebra of operators to those which are neutral under a global symmetry group. This turns out to be given by the full-theory reflected entropy minus an entropy associated to the expectation value of the “twist” operator implementing the symmetry operation. Then we show that the reflected entropy for Gaussian fermion systems can be simply written in terms of correlation functions and we evaluate it numerically for two intervals in the case of a two-dimensional Dirac field as a function of the conformal cross-ratio. Finally, we explain how the aforementioned twist operators can be constructed and we compute the corresponding expectation value and reflected entropy numerically in the case of the ℤ2 bosonic subalgebra of the Dirac field.Fil: Bueno, Pablo. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Casini, Horacio German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaSpringer2020-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/140416Bueno, Pablo; Casini, Horacio German; Reflected entropy, symmetries and free fermions; Springer; Journal of High Energy Physics; 2020; 5; 5-2020; 1-291126-6708CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/JHEP05(2020)103info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2FJHEP05%282020%29103info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:51:08Zoai:ri.conicet.gov.ar:11336/140416instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:51:08.964CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Reflected entropy, symmetries and free fermions
title Reflected entropy, symmetries and free fermions
spellingShingle Reflected entropy, symmetries and free fermions
Bueno, Pablo
CONFORMAL FIELD THEORY
GLOBAL SYMMETRIES
title_short Reflected entropy, symmetries and free fermions
title_full Reflected entropy, symmetries and free fermions
title_fullStr Reflected entropy, symmetries and free fermions
title_full_unstemmed Reflected entropy, symmetries and free fermions
title_sort Reflected entropy, symmetries and free fermions
dc.creator.none.fl_str_mv Bueno, Pablo
Casini, Horacio German
author Bueno, Pablo
author_facet Bueno, Pablo
Casini, Horacio German
author_role author
author2 Casini, Horacio German
author2_role author
dc.subject.none.fl_str_mv CONFORMAL FIELD THEORY
GLOBAL SYMMETRIES
topic CONFORMAL FIELD THEORY
GLOBAL SYMMETRIES
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Exploiting the split property of quantum field theories (QFTs), a notion of von Neumann entropy associated to pairs of spatial subregions has been recently proposed both in the holographic context — where it has been argued to be related to the entanglement wedge cross section — and for general QFTs. We argue that the definition of this “reflected entropy” can be canonically generalized in a way which is particularly suitable for orbifold theories — those obtained by restricting the full algebra of operators to those which are neutral under a global symmetry group. This turns out to be given by the full-theory reflected entropy minus an entropy associated to the expectation value of the “twist” operator implementing the symmetry operation. Then we show that the reflected entropy for Gaussian fermion systems can be simply written in terms of correlation functions and we evaluate it numerically for two intervals in the case of a two-dimensional Dirac field as a function of the conformal cross-ratio. Finally, we explain how the aforementioned twist operators can be constructed and we compute the corresponding expectation value and reflected entropy numerically in the case of the ℤ2 bosonic subalgebra of the Dirac field.
Fil: Bueno, Pablo. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
Fil: Casini, Horacio German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
description Exploiting the split property of quantum field theories (QFTs), a notion of von Neumann entropy associated to pairs of spatial subregions has been recently proposed both in the holographic context — where it has been argued to be related to the entanglement wedge cross section — and for general QFTs. We argue that the definition of this “reflected entropy” can be canonically generalized in a way which is particularly suitable for orbifold theories — those obtained by restricting the full algebra of operators to those which are neutral under a global symmetry group. This turns out to be given by the full-theory reflected entropy minus an entropy associated to the expectation value of the “twist” operator implementing the symmetry operation. Then we show that the reflected entropy for Gaussian fermion systems can be simply written in terms of correlation functions and we evaluate it numerically for two intervals in the case of a two-dimensional Dirac field as a function of the conformal cross-ratio. Finally, we explain how the aforementioned twist operators can be constructed and we compute the corresponding expectation value and reflected entropy numerically in the case of the ℤ2 bosonic subalgebra of the Dirac field.
publishDate 2020
dc.date.none.fl_str_mv 2020-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/140416
Bueno, Pablo; Casini, Horacio German; Reflected entropy, symmetries and free fermions; Springer; Journal of High Energy Physics; 2020; 5; 5-2020; 1-29
1126-6708
CONICET Digital
CONICET
url http://hdl.handle.net/11336/140416
identifier_str_mv Bueno, Pablo; Casini, Horacio German; Reflected entropy, symmetries and free fermions; Springer; Journal of High Energy Physics; 2020; 5; 5-2020; 1-29
1126-6708
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1007/JHEP05(2020)103
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2FJHEP05%282020%29103
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269076068499456
score 13.13397