The Generalization Complexity Measure for Continuous Input Data
- Autores
- Gomez, Ivan; Cannas, Sergio Alejandro; Osenda, Omar; Jerez, Jose M.; Franco, Leonardo
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We introduce in this work an extension for the generalization complexity measure to continuous input data. The measure, originallydefined in Boolean space, quantifies the complexity of data in relationship to the prediction accuracy that can be expected whenusing a supervised classifier like a neural network, SVM, and so forth. We first extend the original measure for its use withcontinuous functions to later on, using an approach based on the use of the set of Walsh functions, consider the case of havinga finite number of data points (inputs/outputs pairs), that is, usually the practical case. Using a set of trigonometric functions amodel that gives a relationship between the size of the hidden layerof a neural network and the complexity is constructed. Finally,we demonstrate the application of the introduced complexity measure, by using the generated model, to the problem of estimatingan adequate neural network architecture for real-world data sets.
Fil: Gomez, Ivan. Universidad de Málaga; España
Fil: Cannas, Sergio Alejandro. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Osenda, Omar. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
Fil: Jerez, Jose M.. Universidad de Málaga; España
Fil: Franco, Leonardo. Universidad de Málaga; España - Materia
-
Complexity Measure
Neural Networks - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/31822
Ver los metadatos del registro completo
id |
CONICETDig_5580a830212136a194840aa8fff853e2 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/31822 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
The Generalization Complexity Measure for Continuous Input DataGomez, IvanCannas, Sergio AlejandroOsenda, OmarJerez, Jose M.Franco, LeonardoComplexity MeasureNeural Networkshttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1We introduce in this work an extension for the generalization complexity measure to continuous input data. The measure, originallydefined in Boolean space, quantifies the complexity of data in relationship to the prediction accuracy that can be expected whenusing a supervised classifier like a neural network, SVM, and so forth. We first extend the original measure for its use withcontinuous functions to later on, using an approach based on the use of the set of Walsh functions, consider the case of havinga finite number of data points (inputs/outputs pairs), that is, usually the practical case. Using a set of trigonometric functions amodel that gives a relationship between the size of the hidden layerof a neural network and the complexity is constructed. Finally,we demonstrate the application of the introduced complexity measure, by using the generated model, to the problem of estimatingan adequate neural network architecture for real-world data sets.Fil: Gomez, Ivan. Universidad de Málaga; EspañaFil: Cannas, Sergio Alejandro. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Osenda, Omar. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaFil: Jerez, Jose M.. Universidad de Málaga; EspañaFil: Franco, Leonardo. Universidad de Málaga; EspañaHindawi Publishing Corporation2014-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/31822Franco, Leonardo; Jerez, Jose M.; Osenda, Omar; Cannas, Sergio Alejandro; Gomez, Ivan; The Generalization Complexity Measure for Continuous Input Data; Hindawi Publishing Corporation; The Scientific World Journal; 2014; 4-2014; 1-92356-6140CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1155/2014/815156info:eu-repo/semantics/altIdentifier/url/https://www.hindawi.com/journals/tswj/2014/815156/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:10:36Zoai:ri.conicet.gov.ar:11336/31822instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:10:37.071CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
The Generalization Complexity Measure for Continuous Input Data |
title |
The Generalization Complexity Measure for Continuous Input Data |
spellingShingle |
The Generalization Complexity Measure for Continuous Input Data Gomez, Ivan Complexity Measure Neural Networks |
title_short |
The Generalization Complexity Measure for Continuous Input Data |
title_full |
The Generalization Complexity Measure for Continuous Input Data |
title_fullStr |
The Generalization Complexity Measure for Continuous Input Data |
title_full_unstemmed |
The Generalization Complexity Measure for Continuous Input Data |
title_sort |
The Generalization Complexity Measure for Continuous Input Data |
dc.creator.none.fl_str_mv |
Gomez, Ivan Cannas, Sergio Alejandro Osenda, Omar Jerez, Jose M. Franco, Leonardo |
author |
Gomez, Ivan |
author_facet |
Gomez, Ivan Cannas, Sergio Alejandro Osenda, Omar Jerez, Jose M. Franco, Leonardo |
author_role |
author |
author2 |
Cannas, Sergio Alejandro Osenda, Omar Jerez, Jose M. Franco, Leonardo |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Complexity Measure Neural Networks |
topic |
Complexity Measure Neural Networks |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We introduce in this work an extension for the generalization complexity measure to continuous input data. The measure, originallydefined in Boolean space, quantifies the complexity of data in relationship to the prediction accuracy that can be expected whenusing a supervised classifier like a neural network, SVM, and so forth. We first extend the original measure for its use withcontinuous functions to later on, using an approach based on the use of the set of Walsh functions, consider the case of havinga finite number of data points (inputs/outputs pairs), that is, usually the practical case. Using a set of trigonometric functions amodel that gives a relationship between the size of the hidden layerof a neural network and the complexity is constructed. Finally,we demonstrate the application of the introduced complexity measure, by using the generated model, to the problem of estimatingan adequate neural network architecture for real-world data sets. Fil: Gomez, Ivan. Universidad de Málaga; España Fil: Cannas, Sergio Alejandro. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Osenda, Omar. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina Fil: Jerez, Jose M.. Universidad de Málaga; España Fil: Franco, Leonardo. Universidad de Málaga; España |
description |
We introduce in this work an extension for the generalization complexity measure to continuous input data. The measure, originallydefined in Boolean space, quantifies the complexity of data in relationship to the prediction accuracy that can be expected whenusing a supervised classifier like a neural network, SVM, and so forth. We first extend the original measure for its use withcontinuous functions to later on, using an approach based on the use of the set of Walsh functions, consider the case of havinga finite number of data points (inputs/outputs pairs), that is, usually the practical case. Using a set of trigonometric functions amodel that gives a relationship between the size of the hidden layerof a neural network and the complexity is constructed. Finally,we demonstrate the application of the introduced complexity measure, by using the generated model, to the problem of estimatingan adequate neural network architecture for real-world data sets. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/31822 Franco, Leonardo; Jerez, Jose M.; Osenda, Omar; Cannas, Sergio Alejandro; Gomez, Ivan; The Generalization Complexity Measure for Continuous Input Data; Hindawi Publishing Corporation; The Scientific World Journal; 2014; 4-2014; 1-9 2356-6140 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/31822 |
identifier_str_mv |
Franco, Leonardo; Jerez, Jose M.; Osenda, Omar; Cannas, Sergio Alejandro; Gomez, Ivan; The Generalization Complexity Measure for Continuous Input Data; Hindawi Publishing Corporation; The Scientific World Journal; 2014; 4-2014; 1-9 2356-6140 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1155/2014/815156 info:eu-repo/semantics/altIdentifier/url/https://www.hindawi.com/journals/tswj/2014/815156/ |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Hindawi Publishing Corporation |
publisher.none.fl_str_mv |
Hindawi Publishing Corporation |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842270127087681536 |
score |
13.13397 |