A linearly computable measure of string complexity

Autores
Becher, V.; Heiber, P.A.
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We present a measure of string complexity, called I-complexity, computable in linear time and space. It counts the number of different substrings in a given string. The least complex strings are the runs of a single symbol, the most complex are the de Bruijn strings. Although the I-complexity of a string is not the length of any minimal description of the string, it satisfies many basic properties of classical description complexity. In particular, the number of strings with I-complexity up to a given value is bounded, and most strings of each length have high I-complexity. © 2012 Elsevier B.V. All rights reserved.
Fil:Becher, V. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Heiber, P.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
Theor Comput Sci 2012;438:62-73
Materia
Basic properties
Computable measures
De Bruijn
Description complexity
Linear time
String complexity
Sub-strings
Computer science
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_03043975_v438_n_p62_Becher

id BDUBAFCEN_038a4f8ce013097493ca7fb92c1aee8f
oai_identifier_str paperaa:paper_03043975_v438_n_p62_Becher
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling A linearly computable measure of string complexityBecher, V.Heiber, P.A.Basic propertiesComputable measuresDe BruijnDescription complexityLinear timeString complexitySub-stringsComputer scienceWe present a measure of string complexity, called I-complexity, computable in linear time and space. It counts the number of different substrings in a given string. The least complex strings are the runs of a single symbol, the most complex are the de Bruijn strings. Although the I-complexity of a string is not the length of any minimal description of the string, it satisfies many basic properties of classical description complexity. In particular, the number of strings with I-complexity up to a given value is bounded, and most strings of each length have high I-complexity. © 2012 Elsevier B.V. All rights reserved.Fil:Becher, V. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Heiber, P.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2012info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_03043975_v438_n_p62_BecherTheor Comput Sci 2012;438:62-73reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-04T09:48:41Zpaperaa:paper_03043975_v438_n_p62_BecherInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-04 09:48:43.002Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv A linearly computable measure of string complexity
title A linearly computable measure of string complexity
spellingShingle A linearly computable measure of string complexity
Becher, V.
Basic properties
Computable measures
De Bruijn
Description complexity
Linear time
String complexity
Sub-strings
Computer science
title_short A linearly computable measure of string complexity
title_full A linearly computable measure of string complexity
title_fullStr A linearly computable measure of string complexity
title_full_unstemmed A linearly computable measure of string complexity
title_sort A linearly computable measure of string complexity
dc.creator.none.fl_str_mv Becher, V.
Heiber, P.A.
author Becher, V.
author_facet Becher, V.
Heiber, P.A.
author_role author
author2 Heiber, P.A.
author2_role author
dc.subject.none.fl_str_mv Basic properties
Computable measures
De Bruijn
Description complexity
Linear time
String complexity
Sub-strings
Computer science
topic Basic properties
Computable measures
De Bruijn
Description complexity
Linear time
String complexity
Sub-strings
Computer science
dc.description.none.fl_txt_mv We present a measure of string complexity, called I-complexity, computable in linear time and space. It counts the number of different substrings in a given string. The least complex strings are the runs of a single symbol, the most complex are the de Bruijn strings. Although the I-complexity of a string is not the length of any minimal description of the string, it satisfies many basic properties of classical description complexity. In particular, the number of strings with I-complexity up to a given value is bounded, and most strings of each length have high I-complexity. © 2012 Elsevier B.V. All rights reserved.
Fil:Becher, V. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Heiber, P.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description We present a measure of string complexity, called I-complexity, computable in linear time and space. It counts the number of different substrings in a given string. The least complex strings are the runs of a single symbol, the most complex are the de Bruijn strings. Although the I-complexity of a string is not the length of any minimal description of the string, it satisfies many basic properties of classical description complexity. In particular, the number of strings with I-complexity up to a given value is bounded, and most strings of each length have high I-complexity. © 2012 Elsevier B.V. All rights reserved.
publishDate 2012
dc.date.none.fl_str_mv 2012
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_03043975_v438_n_p62_Becher
url http://hdl.handle.net/20.500.12110/paper_03043975_v438_n_p62_Becher
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv Theor Comput Sci 2012;438:62-73
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1842340706381725696
score 12.623145