A linearly computable measure of string complexity
- Autores
- Becher, V.; Heiber, P.A.
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We present a measure of string complexity, called I-complexity, computable in linear time and space. It counts the number of different substrings in a given string. The least complex strings are the runs of a single symbol, the most complex are the de Bruijn strings. Although the I-complexity of a string is not the length of any minimal description of the string, it satisfies many basic properties of classical description complexity. In particular, the number of strings with I-complexity up to a given value is bounded, and most strings of each length have high I-complexity. © 2012 Elsevier B.V. All rights reserved.
Fil:Becher, V. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Heiber, P.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- Theor Comput Sci 2012;438:62-73
- Materia
-
Basic properties
Computable measures
De Bruijn
Description complexity
Linear time
String complexity
Sub-strings
Computer science - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_03043975_v438_n_p62_Becher
Ver los metadatos del registro completo
id |
BDUBAFCEN_038a4f8ce013097493ca7fb92c1aee8f |
---|---|
oai_identifier_str |
paperaa:paper_03043975_v438_n_p62_Becher |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
A linearly computable measure of string complexityBecher, V.Heiber, P.A.Basic propertiesComputable measuresDe BruijnDescription complexityLinear timeString complexitySub-stringsComputer scienceWe present a measure of string complexity, called I-complexity, computable in linear time and space. It counts the number of different substrings in a given string. The least complex strings are the runs of a single symbol, the most complex are the de Bruijn strings. Although the I-complexity of a string is not the length of any minimal description of the string, it satisfies many basic properties of classical description complexity. In particular, the number of strings with I-complexity up to a given value is bounded, and most strings of each length have high I-complexity. © 2012 Elsevier B.V. All rights reserved.Fil:Becher, V. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Heiber, P.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2012info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_03043975_v438_n_p62_BecherTheor Comput Sci 2012;438:62-73reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-04T09:48:41Zpaperaa:paper_03043975_v438_n_p62_BecherInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-04 09:48:43.002Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
A linearly computable measure of string complexity |
title |
A linearly computable measure of string complexity |
spellingShingle |
A linearly computable measure of string complexity Becher, V. Basic properties Computable measures De Bruijn Description complexity Linear time String complexity Sub-strings Computer science |
title_short |
A linearly computable measure of string complexity |
title_full |
A linearly computable measure of string complexity |
title_fullStr |
A linearly computable measure of string complexity |
title_full_unstemmed |
A linearly computable measure of string complexity |
title_sort |
A linearly computable measure of string complexity |
dc.creator.none.fl_str_mv |
Becher, V. Heiber, P.A. |
author |
Becher, V. |
author_facet |
Becher, V. Heiber, P.A. |
author_role |
author |
author2 |
Heiber, P.A. |
author2_role |
author |
dc.subject.none.fl_str_mv |
Basic properties Computable measures De Bruijn Description complexity Linear time String complexity Sub-strings Computer science |
topic |
Basic properties Computable measures De Bruijn Description complexity Linear time String complexity Sub-strings Computer science |
dc.description.none.fl_txt_mv |
We present a measure of string complexity, called I-complexity, computable in linear time and space. It counts the number of different substrings in a given string. The least complex strings are the runs of a single symbol, the most complex are the de Bruijn strings. Although the I-complexity of a string is not the length of any minimal description of the string, it satisfies many basic properties of classical description complexity. In particular, the number of strings with I-complexity up to a given value is bounded, and most strings of each length have high I-complexity. © 2012 Elsevier B.V. All rights reserved. Fil:Becher, V. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Heiber, P.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
description |
We present a measure of string complexity, called I-complexity, computable in linear time and space. It counts the number of different substrings in a given string. The least complex strings are the runs of a single symbol, the most complex are the de Bruijn strings. Although the I-complexity of a string is not the length of any minimal description of the string, it satisfies many basic properties of classical description complexity. In particular, the number of strings with I-complexity up to a given value is bounded, and most strings of each length have high I-complexity. © 2012 Elsevier B.V. All rights reserved. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_03043975_v438_n_p62_Becher |
url |
http://hdl.handle.net/20.500.12110/paper_03043975_v438_n_p62_Becher |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
Theor Comput Sci 2012;438:62-73 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1842340706381725696 |
score |
12.623145 |