A linearly computable measure of string complexity
- Autores
- Becher, V.; Heiber, P.A.
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We present a measure of string complexity, called I-complexity, computable in linear time and space. It counts the number of different substrings in a given string. The least complex strings are the runs of a single symbol, the most complex are the de Bruijn strings. Although the I-complexity of a string is not the length of any minimal description of the string, it satisfies many basic properties of classical description complexity. In particular, the number of strings with I-complexity up to a given value is bounded, and most strings of each length have high I-complexity. © 2012 Elsevier B.V. All rights reserved.
Fil:Becher, V. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Heiber, P.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- Theor Comput Sci 2012;438:62-73
- Materia
-
Basic properties
Computable measures
De Bruijn
Description complexity
Linear time
String complexity
Sub-strings
Computer science - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
.jpg)
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_03043975_v438_n_p62_Becher
Ver los metadatos del registro completo
| id |
BDUBAFCEN_038a4f8ce013097493ca7fb92c1aee8f |
|---|---|
| oai_identifier_str |
paperaa:paper_03043975_v438_n_p62_Becher |
| network_acronym_str |
BDUBAFCEN |
| repository_id_str |
1896 |
| network_name_str |
Biblioteca Digital (UBA-FCEN) |
| spelling |
A linearly computable measure of string complexityBecher, V.Heiber, P.A.Basic propertiesComputable measuresDe BruijnDescription complexityLinear timeString complexitySub-stringsComputer scienceWe present a measure of string complexity, called I-complexity, computable in linear time and space. It counts the number of different substrings in a given string. The least complex strings are the runs of a single symbol, the most complex are the de Bruijn strings. Although the I-complexity of a string is not the length of any minimal description of the string, it satisfies many basic properties of classical description complexity. In particular, the number of strings with I-complexity up to a given value is bounded, and most strings of each length have high I-complexity. © 2012 Elsevier B.V. All rights reserved.Fil:Becher, V. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Heiber, P.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2012info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_03043975_v438_n_p62_BecherTheor Comput Sci 2012;438:62-73reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-11-06T09:39:51Zpaperaa:paper_03043975_v438_n_p62_BecherInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-11-06 09:39:53.259Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
| dc.title.none.fl_str_mv |
A linearly computable measure of string complexity |
| title |
A linearly computable measure of string complexity |
| spellingShingle |
A linearly computable measure of string complexity Becher, V. Basic properties Computable measures De Bruijn Description complexity Linear time String complexity Sub-strings Computer science |
| title_short |
A linearly computable measure of string complexity |
| title_full |
A linearly computable measure of string complexity |
| title_fullStr |
A linearly computable measure of string complexity |
| title_full_unstemmed |
A linearly computable measure of string complexity |
| title_sort |
A linearly computable measure of string complexity |
| dc.creator.none.fl_str_mv |
Becher, V. Heiber, P.A. |
| author |
Becher, V. |
| author_facet |
Becher, V. Heiber, P.A. |
| author_role |
author |
| author2 |
Heiber, P.A. |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
Basic properties Computable measures De Bruijn Description complexity Linear time String complexity Sub-strings Computer science |
| topic |
Basic properties Computable measures De Bruijn Description complexity Linear time String complexity Sub-strings Computer science |
| dc.description.none.fl_txt_mv |
We present a measure of string complexity, called I-complexity, computable in linear time and space. It counts the number of different substrings in a given string. The least complex strings are the runs of a single symbol, the most complex are the de Bruijn strings. Although the I-complexity of a string is not the length of any minimal description of the string, it satisfies many basic properties of classical description complexity. In particular, the number of strings with I-complexity up to a given value is bounded, and most strings of each length have high I-complexity. © 2012 Elsevier B.V. All rights reserved. Fil:Becher, V. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Heiber, P.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
| description |
We present a measure of string complexity, called I-complexity, computable in linear time and space. It counts the number of different substrings in a given string. The least complex strings are the runs of a single symbol, the most complex are the de Bruijn strings. Although the I-complexity of a string is not the length of any minimal description of the string, it satisfies many basic properties of classical description complexity. In particular, the number of strings with I-complexity up to a given value is bounded, and most strings of each length have high I-complexity. © 2012 Elsevier B.V. All rights reserved. |
| publishDate |
2012 |
| dc.date.none.fl_str_mv |
2012 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_03043975_v438_n_p62_Becher |
| url |
http://hdl.handle.net/20.500.12110/paper_03043975_v438_n_p62_Becher |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
Theor Comput Sci 2012;438:62-73 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
| reponame_str |
Biblioteca Digital (UBA-FCEN) |
| collection |
Biblioteca Digital (UBA-FCEN) |
| instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
| instacron_str |
UBA-FCEN |
| institution |
UBA-FCEN |
| repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
| repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
| _version_ |
1848046096402612224 |
| score |
13.142177 |