Comparing cortical signatures of atrophy between late-onset and autosomal dominant Alzheimer disease

Autores
Dincer, Aylin; Gordon, Brian A.; Hari-Raj, Amrita; Keefe, Sarah J.; Flores, Shaney; McKay, Nicole S.; Paulick, Angela M.; Shady Lewis, Kristine E.; Feldman, Rebecca L.; Hornbeck, Russ C.; Allegri, Ricardo Francisco; Ances, Beau M.; Berman, Sarah B.; Brickman, Adam M.; Brooks, William S.; Cash, David M.; Chhatwal, Jasmeer P.; Farlow, Martin R.; Fougère, Christian la; Fox, Nick C.; Fulham, Michael J.; Jack, Clifford R.; Joseph-Mathurin, Nelly; Karch, Celeste M.; Lee, Athene; Levin, Johannes; Masters, Colin L.; McDade, Eric M.; Oh, Hwamee; Perrin, Richard J.
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Defining a signature of cortical regions of interest preferentially affected by Alzheimer disease (AD) pathology may offer improved sensitivity to early AD compared to hippocampal volume or mesial temporal lobe alone. Since late-onset Alzheimer disease (LOAD) participants tend to have age-related comorbidities, the younger-onset age in autosomal dominant AD (ADAD) may provide a more idealized model of cortical thinning in AD. To test this, the goals of this study were to compare the degree of overlap between the ADAD and LOAD cortical thinning maps and to evaluate the ability of the ADAD cortical signature regions to predict early pathological changes in cognitively normal individuals. We defined and analyzed the LOAD cortical maps of cortical thickness in 588 participants from the Knight Alzheimer Disease Research Center (Knight ADRC) and the ADAD cortical maps in 269 participants from the Dominantly Inherited Alzheimer Network (DIAN) observational study. Both cohorts were divided into three groups: cognitively normal controls (nADRC = 381; nDIAN = 145), preclinical (nADRC = 153; nDIAN = 76), and cognitively impaired (nADRC = 54; nDIAN = 48). Both cohorts underwent clinical assessments, 3T MRI, and amyloid PET imaging with either 11C-Pittsburgh compound B or 18F-florbetapir. To generate cortical signature maps of cortical thickness, we performed a vertex-wise analysis between the cognitively normal controls and impaired groups within each cohort using six increasingly conservative statistical thresholds to determine significance. The optimal cortical map among the six statistical thresholds was determined from a receiver operating characteristic analysis testing the performance of each map in discriminating between the cognitively normal controls and preclinical groups. We then performed within-cohort and cross-cohort (e.g. ADAD maps evaluated in the Knight ADRC cohort) analyses to examine the sensitivity of the optimal cortical signature maps to the amyloid levels using only the cognitively normal individuals (cognitively normal controls and preclinical groups) in comparison to hippocampal volume. We found the optimal cortical signature maps were sensitive to early increases in amyloid for the asymptomatic individuals within their respective cohorts and were significant beyond the inclusion of hippocampus volume, but the cortical signature maps performed poorly when analyzing across cohorts. These results suggest the cortical signature maps are a useful MRI biomarker of early AD-related neurodegeneration in preclinical individuals and the pattern of decline differs between LOAD and ADAD.
Fil: Dincer, Aylin. Washington University in St. Louis; Estados Unidos
Fil: Gordon, Brian A.. Washington University in St. Louis; Estados Unidos
Fil: Hari-Raj, Amrita. Ohio State University; Estados Unidos
Fil: Keefe, Sarah J.. Washington University in St. Louis; Estados Unidos
Fil: Flores, Shaney. Washington University in St. Louis; Estados Unidos
Fil: McKay, Nicole S.. Washington University in St. Louis; Estados Unidos
Fil: Paulick, Angela M.. Washington University in St. Louis; Estados Unidos
Fil: Shady Lewis, Kristine E.. University of Kentucky; Estados Unidos
Fil: Feldman, Rebecca L.. Washington University in St. Louis; Estados Unidos
Fil: Hornbeck, Russ C.. Washington University in St. Louis; Estados Unidos
Fil: Allegri, Ricardo Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia; Argentina
Fil: Ances, Beau M.. Washington University in St. Louis; Estados Unidos
Fil: Berman, Sarah B.. University of Pittsburgh; Estados Unidos
Fil: Brickman, Adam M.. Columbia University; Estados Unidos
Fil: Brooks, William S.. Neuroscience Research Australia; Australia. University of New South Wales; Australia
Fil: Cash, David M.. UCL Queen Square Institute of Neurology; Reino Unido
Fil: Chhatwal, Jasmeer P.. Harvard Medical School; Estados Unidos
Fil: Farlow, Martin R.. Indiana University; Estados Unidos
Fil: Fougère, Christian la. German Center for Neurodegenerative Diseases; Alemania. University Hospital of Tübingen; Alemania
Fil: Fox, Nick C.. UCL Queen Square Institute of Neurology; Reino Unido
Fil: Fulham, Michael J.. Royal Prince Alfred Hospital; Australia. University of Sydney; Australia
Fil: Jack, Clifford R.. Mayo Clinic; Estados Unidos
Fil: Joseph-Mathurin, Nelly. Washington University in St. Louis; Estados Unidos
Fil: Karch, Celeste M.. Washington University in St. Louis; Estados Unidos
Fil: Lee, Athene. University Brown; Estados Unidos
Fil: Levin, Johannes. German Center for Neurodegenerative Diseases; Alemania. Ludwig Maximilians Universitat; Alemania. Munich Cluster for Systems Neurology; Alemania
Fil: Masters, Colin L.. University of Melbourne; Australia
Fil: McDade, Eric M.. Washington University in St. Louis; Estados Unidos
Fil: Oh, Hwamee. University Brown; Estados Unidos
Fil: Perrin, Richard J.. Washington University in St. Louis; Estados Unidos
Materia
ALZHEIMER DISEASE
AMYLOID
AUTOSOMAL DOMINANT ALZHEIMER DISEASE
CORTICAL SIGNATURE
CORTICAL THICKNESS
PRECLINICAL
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/169187

id CONICETDig_54872ac2240019101e12136a3aff1da0
oai_identifier_str oai:ri.conicet.gov.ar:11336/169187
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Comparing cortical signatures of atrophy between late-onset and autosomal dominant Alzheimer diseaseDincer, AylinGordon, Brian A.Hari-Raj, AmritaKeefe, Sarah J.Flores, ShaneyMcKay, Nicole S.Paulick, Angela M.Shady Lewis, Kristine E.Feldman, Rebecca L.Hornbeck, Russ C.Allegri, Ricardo FranciscoAnces, Beau M.Berman, Sarah B.Brickman, Adam M.Brooks, William S.Cash, David M.Chhatwal, Jasmeer P.Farlow, Martin R.Fougère, Christian laFox, Nick C.Fulham, Michael J.Jack, Clifford R.Joseph-Mathurin, NellyKarch, Celeste M.Lee, AtheneLevin, JohannesMasters, Colin L.McDade, Eric M.Oh, HwameePerrin, Richard J.ALZHEIMER DISEASEAMYLOIDAUTOSOMAL DOMINANT ALZHEIMER DISEASECORTICAL SIGNATURECORTICAL THICKNESSPRECLINICALhttps://purl.org/becyt/ford/3.2https://purl.org/becyt/ford/3Defining a signature of cortical regions of interest preferentially affected by Alzheimer disease (AD) pathology may offer improved sensitivity to early AD compared to hippocampal volume or mesial temporal lobe alone. Since late-onset Alzheimer disease (LOAD) participants tend to have age-related comorbidities, the younger-onset age in autosomal dominant AD (ADAD) may provide a more idealized model of cortical thinning in AD. To test this, the goals of this study were to compare the degree of overlap between the ADAD and LOAD cortical thinning maps and to evaluate the ability of the ADAD cortical signature regions to predict early pathological changes in cognitively normal individuals. We defined and analyzed the LOAD cortical maps of cortical thickness in 588 participants from the Knight Alzheimer Disease Research Center (Knight ADRC) and the ADAD cortical maps in 269 participants from the Dominantly Inherited Alzheimer Network (DIAN) observational study. Both cohorts were divided into three groups: cognitively normal controls (nADRC = 381; nDIAN = 145), preclinical (nADRC = 153; nDIAN = 76), and cognitively impaired (nADRC = 54; nDIAN = 48). Both cohorts underwent clinical assessments, 3T MRI, and amyloid PET imaging with either 11C-Pittsburgh compound B or 18F-florbetapir. To generate cortical signature maps of cortical thickness, we performed a vertex-wise analysis between the cognitively normal controls and impaired groups within each cohort using six increasingly conservative statistical thresholds to determine significance. The optimal cortical map among the six statistical thresholds was determined from a receiver operating characteristic analysis testing the performance of each map in discriminating between the cognitively normal controls and preclinical groups. We then performed within-cohort and cross-cohort (e.g. ADAD maps evaluated in the Knight ADRC cohort) analyses to examine the sensitivity of the optimal cortical signature maps to the amyloid levels using only the cognitively normal individuals (cognitively normal controls and preclinical groups) in comparison to hippocampal volume. We found the optimal cortical signature maps were sensitive to early increases in amyloid for the asymptomatic individuals within their respective cohorts and were significant beyond the inclusion of hippocampus volume, but the cortical signature maps performed poorly when analyzing across cohorts. These results suggest the cortical signature maps are a useful MRI biomarker of early AD-related neurodegeneration in preclinical individuals and the pattern of decline differs between LOAD and ADAD.Fil: Dincer, Aylin. Washington University in St. Louis; Estados UnidosFil: Gordon, Brian A.. Washington University in St. Louis; Estados UnidosFil: Hari-Raj, Amrita. Ohio State University; Estados UnidosFil: Keefe, Sarah J.. Washington University in St. Louis; Estados UnidosFil: Flores, Shaney. Washington University in St. Louis; Estados UnidosFil: McKay, Nicole S.. Washington University in St. Louis; Estados UnidosFil: Paulick, Angela M.. Washington University in St. Louis; Estados UnidosFil: Shady Lewis, Kristine E.. University of Kentucky; Estados UnidosFil: Feldman, Rebecca L.. Washington University in St. Louis; Estados UnidosFil: Hornbeck, Russ C.. Washington University in St. Louis; Estados UnidosFil: Allegri, Ricardo Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia; ArgentinaFil: Ances, Beau M.. Washington University in St. Louis; Estados UnidosFil: Berman, Sarah B.. University of Pittsburgh; Estados UnidosFil: Brickman, Adam M.. Columbia University; Estados UnidosFil: Brooks, William S.. Neuroscience Research Australia; Australia. University of New South Wales; AustraliaFil: Cash, David M.. UCL Queen Square Institute of Neurology; Reino UnidoFil: Chhatwal, Jasmeer P.. Harvard Medical School; Estados UnidosFil: Farlow, Martin R.. Indiana University; Estados UnidosFil: Fougère, Christian la. German Center for Neurodegenerative Diseases; Alemania. University Hospital of Tübingen; AlemaniaFil: Fox, Nick C.. UCL Queen Square Institute of Neurology; Reino UnidoFil: Fulham, Michael J.. Royal Prince Alfred Hospital; Australia. University of Sydney; AustraliaFil: Jack, Clifford R.. Mayo Clinic; Estados UnidosFil: Joseph-Mathurin, Nelly. Washington University in St. Louis; Estados UnidosFil: Karch, Celeste M.. Washington University in St. Louis; Estados UnidosFil: Lee, Athene. University Brown; Estados UnidosFil: Levin, Johannes. German Center for Neurodegenerative Diseases; Alemania. Ludwig Maximilians Universitat; Alemania. Munich Cluster for Systems Neurology; AlemaniaFil: Masters, Colin L.. University of Melbourne; AustraliaFil: McDade, Eric M.. Washington University in St. Louis; Estados UnidosFil: Oh, Hwamee. University Brown; Estados UnidosFil: Perrin, Richard J.. Washington University in St. Louis; Estados UnidosElsevier2020-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/169187Dincer, Aylin; Gordon, Brian A.; Hari-Raj, Amrita; Keefe, Sarah J.; Flores, Shaney; et al.; Comparing cortical signatures of atrophy between late-onset and autosomal dominant Alzheimer disease; Elsevier; NeuroImage: Clinical; 28; 1-2020; 1-112213-1582CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S2213158220303284info:eu-repo/semantics/altIdentifier/doi/10.1016/j.nicl.2020.102491info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:55:33Zoai:ri.conicet.gov.ar:11336/169187instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:55:33.45CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Comparing cortical signatures of atrophy between late-onset and autosomal dominant Alzheimer disease
title Comparing cortical signatures of atrophy between late-onset and autosomal dominant Alzheimer disease
spellingShingle Comparing cortical signatures of atrophy between late-onset and autosomal dominant Alzheimer disease
Dincer, Aylin
ALZHEIMER DISEASE
AMYLOID
AUTOSOMAL DOMINANT ALZHEIMER DISEASE
CORTICAL SIGNATURE
CORTICAL THICKNESS
PRECLINICAL
title_short Comparing cortical signatures of atrophy between late-onset and autosomal dominant Alzheimer disease
title_full Comparing cortical signatures of atrophy between late-onset and autosomal dominant Alzheimer disease
title_fullStr Comparing cortical signatures of atrophy between late-onset and autosomal dominant Alzheimer disease
title_full_unstemmed Comparing cortical signatures of atrophy between late-onset and autosomal dominant Alzheimer disease
title_sort Comparing cortical signatures of atrophy between late-onset and autosomal dominant Alzheimer disease
dc.creator.none.fl_str_mv Dincer, Aylin
Gordon, Brian A.
Hari-Raj, Amrita
Keefe, Sarah J.
Flores, Shaney
McKay, Nicole S.
Paulick, Angela M.
Shady Lewis, Kristine E.
Feldman, Rebecca L.
Hornbeck, Russ C.
Allegri, Ricardo Francisco
Ances, Beau M.
Berman, Sarah B.
Brickman, Adam M.
Brooks, William S.
Cash, David M.
Chhatwal, Jasmeer P.
Farlow, Martin R.
Fougère, Christian la
Fox, Nick C.
Fulham, Michael J.
Jack, Clifford R.
Joseph-Mathurin, Nelly
Karch, Celeste M.
Lee, Athene
Levin, Johannes
Masters, Colin L.
McDade, Eric M.
Oh, Hwamee
Perrin, Richard J.
author Dincer, Aylin
author_facet Dincer, Aylin
Gordon, Brian A.
Hari-Raj, Amrita
Keefe, Sarah J.
Flores, Shaney
McKay, Nicole S.
Paulick, Angela M.
Shady Lewis, Kristine E.
Feldman, Rebecca L.
Hornbeck, Russ C.
Allegri, Ricardo Francisco
Ances, Beau M.
Berman, Sarah B.
Brickman, Adam M.
Brooks, William S.
Cash, David M.
Chhatwal, Jasmeer P.
Farlow, Martin R.
Fougère, Christian la
Fox, Nick C.
Fulham, Michael J.
Jack, Clifford R.
Joseph-Mathurin, Nelly
Karch, Celeste M.
Lee, Athene
Levin, Johannes
Masters, Colin L.
McDade, Eric M.
Oh, Hwamee
Perrin, Richard J.
author_role author
author2 Gordon, Brian A.
Hari-Raj, Amrita
Keefe, Sarah J.
Flores, Shaney
McKay, Nicole S.
Paulick, Angela M.
Shady Lewis, Kristine E.
Feldman, Rebecca L.
Hornbeck, Russ C.
Allegri, Ricardo Francisco
Ances, Beau M.
Berman, Sarah B.
Brickman, Adam M.
Brooks, William S.
Cash, David M.
Chhatwal, Jasmeer P.
Farlow, Martin R.
Fougère, Christian la
Fox, Nick C.
Fulham, Michael J.
Jack, Clifford R.
Joseph-Mathurin, Nelly
Karch, Celeste M.
Lee, Athene
Levin, Johannes
Masters, Colin L.
McDade, Eric M.
Oh, Hwamee
Perrin, Richard J.
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv ALZHEIMER DISEASE
AMYLOID
AUTOSOMAL DOMINANT ALZHEIMER DISEASE
CORTICAL SIGNATURE
CORTICAL THICKNESS
PRECLINICAL
topic ALZHEIMER DISEASE
AMYLOID
AUTOSOMAL DOMINANT ALZHEIMER DISEASE
CORTICAL SIGNATURE
CORTICAL THICKNESS
PRECLINICAL
purl_subject.fl_str_mv https://purl.org/becyt/ford/3.2
https://purl.org/becyt/ford/3
dc.description.none.fl_txt_mv Defining a signature of cortical regions of interest preferentially affected by Alzheimer disease (AD) pathology may offer improved sensitivity to early AD compared to hippocampal volume or mesial temporal lobe alone. Since late-onset Alzheimer disease (LOAD) participants tend to have age-related comorbidities, the younger-onset age in autosomal dominant AD (ADAD) may provide a more idealized model of cortical thinning in AD. To test this, the goals of this study were to compare the degree of overlap between the ADAD and LOAD cortical thinning maps and to evaluate the ability of the ADAD cortical signature regions to predict early pathological changes in cognitively normal individuals. We defined and analyzed the LOAD cortical maps of cortical thickness in 588 participants from the Knight Alzheimer Disease Research Center (Knight ADRC) and the ADAD cortical maps in 269 participants from the Dominantly Inherited Alzheimer Network (DIAN) observational study. Both cohorts were divided into three groups: cognitively normal controls (nADRC = 381; nDIAN = 145), preclinical (nADRC = 153; nDIAN = 76), and cognitively impaired (nADRC = 54; nDIAN = 48). Both cohorts underwent clinical assessments, 3T MRI, and amyloid PET imaging with either 11C-Pittsburgh compound B or 18F-florbetapir. To generate cortical signature maps of cortical thickness, we performed a vertex-wise analysis between the cognitively normal controls and impaired groups within each cohort using six increasingly conservative statistical thresholds to determine significance. The optimal cortical map among the six statistical thresholds was determined from a receiver operating characteristic analysis testing the performance of each map in discriminating between the cognitively normal controls and preclinical groups. We then performed within-cohort and cross-cohort (e.g. ADAD maps evaluated in the Knight ADRC cohort) analyses to examine the sensitivity of the optimal cortical signature maps to the amyloid levels using only the cognitively normal individuals (cognitively normal controls and preclinical groups) in comparison to hippocampal volume. We found the optimal cortical signature maps were sensitive to early increases in amyloid for the asymptomatic individuals within their respective cohorts and were significant beyond the inclusion of hippocampus volume, but the cortical signature maps performed poorly when analyzing across cohorts. These results suggest the cortical signature maps are a useful MRI biomarker of early AD-related neurodegeneration in preclinical individuals and the pattern of decline differs between LOAD and ADAD.
Fil: Dincer, Aylin. Washington University in St. Louis; Estados Unidos
Fil: Gordon, Brian A.. Washington University in St. Louis; Estados Unidos
Fil: Hari-Raj, Amrita. Ohio State University; Estados Unidos
Fil: Keefe, Sarah J.. Washington University in St. Louis; Estados Unidos
Fil: Flores, Shaney. Washington University in St. Louis; Estados Unidos
Fil: McKay, Nicole S.. Washington University in St. Louis; Estados Unidos
Fil: Paulick, Angela M.. Washington University in St. Louis; Estados Unidos
Fil: Shady Lewis, Kristine E.. University of Kentucky; Estados Unidos
Fil: Feldman, Rebecca L.. Washington University in St. Louis; Estados Unidos
Fil: Hornbeck, Russ C.. Washington University in St. Louis; Estados Unidos
Fil: Allegri, Ricardo Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia; Argentina
Fil: Ances, Beau M.. Washington University in St. Louis; Estados Unidos
Fil: Berman, Sarah B.. University of Pittsburgh; Estados Unidos
Fil: Brickman, Adam M.. Columbia University; Estados Unidos
Fil: Brooks, William S.. Neuroscience Research Australia; Australia. University of New South Wales; Australia
Fil: Cash, David M.. UCL Queen Square Institute of Neurology; Reino Unido
Fil: Chhatwal, Jasmeer P.. Harvard Medical School; Estados Unidos
Fil: Farlow, Martin R.. Indiana University; Estados Unidos
Fil: Fougère, Christian la. German Center for Neurodegenerative Diseases; Alemania. University Hospital of Tübingen; Alemania
Fil: Fox, Nick C.. UCL Queen Square Institute of Neurology; Reino Unido
Fil: Fulham, Michael J.. Royal Prince Alfred Hospital; Australia. University of Sydney; Australia
Fil: Jack, Clifford R.. Mayo Clinic; Estados Unidos
Fil: Joseph-Mathurin, Nelly. Washington University in St. Louis; Estados Unidos
Fil: Karch, Celeste M.. Washington University in St. Louis; Estados Unidos
Fil: Lee, Athene. University Brown; Estados Unidos
Fil: Levin, Johannes. German Center for Neurodegenerative Diseases; Alemania. Ludwig Maximilians Universitat; Alemania. Munich Cluster for Systems Neurology; Alemania
Fil: Masters, Colin L.. University of Melbourne; Australia
Fil: McDade, Eric M.. Washington University in St. Louis; Estados Unidos
Fil: Oh, Hwamee. University Brown; Estados Unidos
Fil: Perrin, Richard J.. Washington University in St. Louis; Estados Unidos
description Defining a signature of cortical regions of interest preferentially affected by Alzheimer disease (AD) pathology may offer improved sensitivity to early AD compared to hippocampal volume or mesial temporal lobe alone. Since late-onset Alzheimer disease (LOAD) participants tend to have age-related comorbidities, the younger-onset age in autosomal dominant AD (ADAD) may provide a more idealized model of cortical thinning in AD. To test this, the goals of this study were to compare the degree of overlap between the ADAD and LOAD cortical thinning maps and to evaluate the ability of the ADAD cortical signature regions to predict early pathological changes in cognitively normal individuals. We defined and analyzed the LOAD cortical maps of cortical thickness in 588 participants from the Knight Alzheimer Disease Research Center (Knight ADRC) and the ADAD cortical maps in 269 participants from the Dominantly Inherited Alzheimer Network (DIAN) observational study. Both cohorts were divided into three groups: cognitively normal controls (nADRC = 381; nDIAN = 145), preclinical (nADRC = 153; nDIAN = 76), and cognitively impaired (nADRC = 54; nDIAN = 48). Both cohorts underwent clinical assessments, 3T MRI, and amyloid PET imaging with either 11C-Pittsburgh compound B or 18F-florbetapir. To generate cortical signature maps of cortical thickness, we performed a vertex-wise analysis between the cognitively normal controls and impaired groups within each cohort using six increasingly conservative statistical thresholds to determine significance. The optimal cortical map among the six statistical thresholds was determined from a receiver operating characteristic analysis testing the performance of each map in discriminating between the cognitively normal controls and preclinical groups. We then performed within-cohort and cross-cohort (e.g. ADAD maps evaluated in the Knight ADRC cohort) analyses to examine the sensitivity of the optimal cortical signature maps to the amyloid levels using only the cognitively normal individuals (cognitively normal controls and preclinical groups) in comparison to hippocampal volume. We found the optimal cortical signature maps were sensitive to early increases in amyloid for the asymptomatic individuals within their respective cohorts and were significant beyond the inclusion of hippocampus volume, but the cortical signature maps performed poorly when analyzing across cohorts. These results suggest the cortical signature maps are a useful MRI biomarker of early AD-related neurodegeneration in preclinical individuals and the pattern of decline differs between LOAD and ADAD.
publishDate 2020
dc.date.none.fl_str_mv 2020-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/169187
Dincer, Aylin; Gordon, Brian A.; Hari-Raj, Amrita; Keefe, Sarah J.; Flores, Shaney; et al.; Comparing cortical signatures of atrophy between late-onset and autosomal dominant Alzheimer disease; Elsevier; NeuroImage: Clinical; 28; 1-2020; 1-11
2213-1582
CONICET Digital
CONICET
url http://hdl.handle.net/11336/169187
identifier_str_mv Dincer, Aylin; Gordon, Brian A.; Hari-Raj, Amrita; Keefe, Sarah J.; Flores, Shaney; et al.; Comparing cortical signatures of atrophy between late-onset and autosomal dominant Alzheimer disease; Elsevier; NeuroImage: Clinical; 28; 1-2020; 1-11
2213-1582
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S2213158220303284
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.nicl.2020.102491
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269351901659136
score 13.13397