A finite element formulation of gradient-based plasticity for porous media with C1 interpolation of internal variables

Autores
Mroginski, Javier Luis; Etse, Jose Guillermo
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper a new finite element formulation for numerical analysis of diffused and localized failure behavior of saturated and partially saturated gradient poroplastic materials is proposed. The new finite element includes interpolation functions of first order (C1) for the internal variables field while classical C0 interpolation functions for the kinematic fields and pore pressure. This finite element formulation is compatible with a thermodynamically consistent gradient poroplastic theory previously proposed by the authors. In this material theory the internal variables are the only ones of non-local character. To verify the numerical efficiency of the proposed finite element formulation, the non-local gradient poroplastic constitutive theory is combined with the modified Cam Clay model for partially saturated continua. Thereby, the volumetric strain of the solid skeleton and the plastic porosity are the internal variables of the constitutive theory. The numerical results in this paper demonstrate the capabilities of the proposed finite element formulation to capture diffuse and localized failure modes of boundary value problems of porous media, depending on the acting confining pressure and on the material saturation degree.
Fil: Mroginski, Javier Luis. Universidad Nacional del Nordeste; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Etse, Jose Guillermo. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnologia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Gradient Theory
Porous Media
C1-Continuous Fe
Thermodynamic Consistent
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/21964

id CONICETDig_532d5903f56ff2d9e09008f6267dcf55
oai_identifier_str oai:ri.conicet.gov.ar:11336/21964
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A finite element formulation of gradient-based plasticity for porous media with C1 interpolation of internal variablesMroginski, Javier LuisEtse, Jose GuillermoGradient TheoryPorous MediaC1-Continuous FeThermodynamic ConsistentIn this paper a new finite element formulation for numerical analysis of diffused and localized failure behavior of saturated and partially saturated gradient poroplastic materials is proposed. The new finite element includes interpolation functions of first order (C1) for the internal variables field while classical C0 interpolation functions for the kinematic fields and pore pressure. This finite element formulation is compatible with a thermodynamically consistent gradient poroplastic theory previously proposed by the authors. In this material theory the internal variables are the only ones of non-local character. To verify the numerical efficiency of the proposed finite element formulation, the non-local gradient poroplastic constitutive theory is combined with the modified Cam Clay model for partially saturated continua. Thereby, the volumetric strain of the solid skeleton and the plastic porosity are the internal variables of the constitutive theory. The numerical results in this paper demonstrate the capabilities of the proposed finite element formulation to capture diffuse and localized failure modes of boundary value problems of porous media, depending on the acting confining pressure and on the material saturation degree.Fil: Mroginski, Javier Luis. Universidad Nacional del Nordeste; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Etse, Jose Guillermo. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnologia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier2012-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/21964Mroginski, Javier Luis; Etse, Jose Guillermo; A finite element formulation of gradient-based plasticity for porous media with C1 interpolation of internal variables; Elsevier; Computers And Geotechnics; 49; 12-2012; 7-170266-352XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.compgeo.2012.11.003info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0266352X12002169info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:06:26Zoai:ri.conicet.gov.ar:11336/21964instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:06:27.181CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A finite element formulation of gradient-based plasticity for porous media with C1 interpolation of internal variables
title A finite element formulation of gradient-based plasticity for porous media with C1 interpolation of internal variables
spellingShingle A finite element formulation of gradient-based plasticity for porous media with C1 interpolation of internal variables
Mroginski, Javier Luis
Gradient Theory
Porous Media
C1-Continuous Fe
Thermodynamic Consistent
title_short A finite element formulation of gradient-based plasticity for porous media with C1 interpolation of internal variables
title_full A finite element formulation of gradient-based plasticity for porous media with C1 interpolation of internal variables
title_fullStr A finite element formulation of gradient-based plasticity for porous media with C1 interpolation of internal variables
title_full_unstemmed A finite element formulation of gradient-based plasticity for porous media with C1 interpolation of internal variables
title_sort A finite element formulation of gradient-based plasticity for porous media with C1 interpolation of internal variables
dc.creator.none.fl_str_mv Mroginski, Javier Luis
Etse, Jose Guillermo
author Mroginski, Javier Luis
author_facet Mroginski, Javier Luis
Etse, Jose Guillermo
author_role author
author2 Etse, Jose Guillermo
author2_role author
dc.subject.none.fl_str_mv Gradient Theory
Porous Media
C1-Continuous Fe
Thermodynamic Consistent
topic Gradient Theory
Porous Media
C1-Continuous Fe
Thermodynamic Consistent
dc.description.none.fl_txt_mv In this paper a new finite element formulation for numerical analysis of diffused and localized failure behavior of saturated and partially saturated gradient poroplastic materials is proposed. The new finite element includes interpolation functions of first order (C1) for the internal variables field while classical C0 interpolation functions for the kinematic fields and pore pressure. This finite element formulation is compatible with a thermodynamically consistent gradient poroplastic theory previously proposed by the authors. In this material theory the internal variables are the only ones of non-local character. To verify the numerical efficiency of the proposed finite element formulation, the non-local gradient poroplastic constitutive theory is combined with the modified Cam Clay model for partially saturated continua. Thereby, the volumetric strain of the solid skeleton and the plastic porosity are the internal variables of the constitutive theory. The numerical results in this paper demonstrate the capabilities of the proposed finite element formulation to capture diffuse and localized failure modes of boundary value problems of porous media, depending on the acting confining pressure and on the material saturation degree.
Fil: Mroginski, Javier Luis. Universidad Nacional del Nordeste; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Etse, Jose Guillermo. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnologia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description In this paper a new finite element formulation for numerical analysis of diffused and localized failure behavior of saturated and partially saturated gradient poroplastic materials is proposed. The new finite element includes interpolation functions of first order (C1) for the internal variables field while classical C0 interpolation functions for the kinematic fields and pore pressure. This finite element formulation is compatible with a thermodynamically consistent gradient poroplastic theory previously proposed by the authors. In this material theory the internal variables are the only ones of non-local character. To verify the numerical efficiency of the proposed finite element formulation, the non-local gradient poroplastic constitutive theory is combined with the modified Cam Clay model for partially saturated continua. Thereby, the volumetric strain of the solid skeleton and the plastic porosity are the internal variables of the constitutive theory. The numerical results in this paper demonstrate the capabilities of the proposed finite element formulation to capture diffuse and localized failure modes of boundary value problems of porous media, depending on the acting confining pressure and on the material saturation degree.
publishDate 2012
dc.date.none.fl_str_mv 2012-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/21964
Mroginski, Javier Luis; Etse, Jose Guillermo; A finite element formulation of gradient-based plasticity for porous media with C1 interpolation of internal variables; Elsevier; Computers And Geotechnics; 49; 12-2012; 7-17
0266-352X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/21964
identifier_str_mv Mroginski, Javier Luis; Etse, Jose Guillermo; A finite element formulation of gradient-based plasticity for porous media with C1 interpolation of internal variables; Elsevier; Computers And Geotechnics; 49; 12-2012; 7-17
0266-352X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.compgeo.2012.11.003
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0266352X12002169
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846781362920488960
score 12.982451