A thermodynamical gradient theory for deformation and strain localization of porous media

Autores
Mroginski, Javier Luis; Etse, Jose Guillermo; Vrech, Sonia Mariel
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this work, a thermodynamically consistent gradient formulation for partially saturated cohesive-frictional porous media is proposed. The constitutive model includes a classical or local hardening law and a softening formulation with state parameters of non-local character based on gradient theory. Internal characteristic length in softening regime accounts for the strong shear band width sensitivity of partially saturated porous media regarding both governing stress state and hydraulic conditions. In this way the variation of the transition point (TP) of brittle-ductile failure mode can be realistically described depending on current confinement condition and saturation level. After describing the thermodynamically consistent gradient theory the paper focuses on its extension to the case of partially saturated porous media and, moreover, on the formulation of the gradient-based characteristic length in terms of stress and hydraulic conditions. Then the localization indicator for discontinuous bifurcation is formulated for both drained and undrained conditions. © 2010 Elsevier Ltd. All rights reserved.
Fil: Mroginski, Javier Luis. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Centro de Métodos Numéricos y Computacionales en Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina
Fil: Etse, Jose Guillermo. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina
Fil: Vrech, Sonia Mariel. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina
Materia
GRADIENT THEORY
LOCALIZED FAILURE
POROUS MEDIA
SOFTENING BEHAVIOR
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/141544

id CONICETDig_e36305c349cce4c116a98318ea91c10a
oai_identifier_str oai:ri.conicet.gov.ar:11336/141544
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A thermodynamical gradient theory for deformation and strain localization of porous mediaMroginski, Javier LuisEtse, Jose GuillermoVrech, Sonia MarielGRADIENT THEORYLOCALIZED FAILUREPOROUS MEDIASOFTENING BEHAVIORhttps://purl.org/becyt/ford/2.1https://purl.org/becyt/ford/2In this work, a thermodynamically consistent gradient formulation for partially saturated cohesive-frictional porous media is proposed. The constitutive model includes a classical or local hardening law and a softening formulation with state parameters of non-local character based on gradient theory. Internal characteristic length in softening regime accounts for the strong shear band width sensitivity of partially saturated porous media regarding both governing stress state and hydraulic conditions. In this way the variation of the transition point (TP) of brittle-ductile failure mode can be realistically described depending on current confinement condition and saturation level. After describing the thermodynamically consistent gradient theory the paper focuses on its extension to the case of partially saturated porous media and, moreover, on the formulation of the gradient-based characteristic length in terms of stress and hydraulic conditions. Then the localization indicator for discontinuous bifurcation is formulated for both drained and undrained conditions. © 2010 Elsevier Ltd. All rights reserved.Fil: Mroginski, Javier Luis. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Centro de Métodos Numéricos y Computacionales en Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; ArgentinaFil: Etse, Jose Guillermo. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; ArgentinaFil: Vrech, Sonia Mariel. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; ArgentinaPergamon-Elsevier Science Ltd2011-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/141544Mroginski, Javier Luis; Etse, Jose Guillermo; Vrech, Sonia Mariel; A thermodynamical gradient theory for deformation and strain localization of porous media; Pergamon-Elsevier Science Ltd; International Journal of Plasticity; 27; 4; 4-2011; 620-6340749-6419CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.ijplas.2010.08.010info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0749641910001154?via%3Dihub#!info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T12:01:15Zoai:ri.conicet.gov.ar:11336/141544instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 12:01:15.997CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A thermodynamical gradient theory for deformation and strain localization of porous media
title A thermodynamical gradient theory for deformation and strain localization of porous media
spellingShingle A thermodynamical gradient theory for deformation and strain localization of porous media
Mroginski, Javier Luis
GRADIENT THEORY
LOCALIZED FAILURE
POROUS MEDIA
SOFTENING BEHAVIOR
title_short A thermodynamical gradient theory for deformation and strain localization of porous media
title_full A thermodynamical gradient theory for deformation and strain localization of porous media
title_fullStr A thermodynamical gradient theory for deformation and strain localization of porous media
title_full_unstemmed A thermodynamical gradient theory for deformation and strain localization of porous media
title_sort A thermodynamical gradient theory for deformation and strain localization of porous media
dc.creator.none.fl_str_mv Mroginski, Javier Luis
Etse, Jose Guillermo
Vrech, Sonia Mariel
author Mroginski, Javier Luis
author_facet Mroginski, Javier Luis
Etse, Jose Guillermo
Vrech, Sonia Mariel
author_role author
author2 Etse, Jose Guillermo
Vrech, Sonia Mariel
author2_role author
author
dc.subject.none.fl_str_mv GRADIENT THEORY
LOCALIZED FAILURE
POROUS MEDIA
SOFTENING BEHAVIOR
topic GRADIENT THEORY
LOCALIZED FAILURE
POROUS MEDIA
SOFTENING BEHAVIOR
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.1
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv In this work, a thermodynamically consistent gradient formulation for partially saturated cohesive-frictional porous media is proposed. The constitutive model includes a classical or local hardening law and a softening formulation with state parameters of non-local character based on gradient theory. Internal characteristic length in softening regime accounts for the strong shear band width sensitivity of partially saturated porous media regarding both governing stress state and hydraulic conditions. In this way the variation of the transition point (TP) of brittle-ductile failure mode can be realistically described depending on current confinement condition and saturation level. After describing the thermodynamically consistent gradient theory the paper focuses on its extension to the case of partially saturated porous media and, moreover, on the formulation of the gradient-based characteristic length in terms of stress and hydraulic conditions. Then the localization indicator for discontinuous bifurcation is formulated for both drained and undrained conditions. © 2010 Elsevier Ltd. All rights reserved.
Fil: Mroginski, Javier Luis. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Centro de Métodos Numéricos y Computacionales en Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina
Fil: Etse, Jose Guillermo. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina
Fil: Vrech, Sonia Mariel. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina
description In this work, a thermodynamically consistent gradient formulation for partially saturated cohesive-frictional porous media is proposed. The constitutive model includes a classical or local hardening law and a softening formulation with state parameters of non-local character based on gradient theory. Internal characteristic length in softening regime accounts for the strong shear band width sensitivity of partially saturated porous media regarding both governing stress state and hydraulic conditions. In this way the variation of the transition point (TP) of brittle-ductile failure mode can be realistically described depending on current confinement condition and saturation level. After describing the thermodynamically consistent gradient theory the paper focuses on its extension to the case of partially saturated porous media and, moreover, on the formulation of the gradient-based characteristic length in terms of stress and hydraulic conditions. Then the localization indicator for discontinuous bifurcation is formulated for both drained and undrained conditions. © 2010 Elsevier Ltd. All rights reserved.
publishDate 2011
dc.date.none.fl_str_mv 2011-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/141544
Mroginski, Javier Luis; Etse, Jose Guillermo; Vrech, Sonia Mariel; A thermodynamical gradient theory for deformation and strain localization of porous media; Pergamon-Elsevier Science Ltd; International Journal of Plasticity; 27; 4; 4-2011; 620-634
0749-6419
CONICET Digital
CONICET
url http://hdl.handle.net/11336/141544
identifier_str_mv Mroginski, Javier Luis; Etse, Jose Guillermo; Vrech, Sonia Mariel; A thermodynamical gradient theory for deformation and strain localization of porous media; Pergamon-Elsevier Science Ltd; International Journal of Plasticity; 27; 4; 4-2011; 620-634
0749-6419
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ijplas.2010.08.010
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0749641910001154?via%3Dihub#!
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846782343345340416
score 13.229304