Detecting Students' Perception Style by using Games

Autores
Amandi, Analia Adriana; Feldman, Juan; Monteserin, Ariel José
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Knowing students´ learning styles allows us to improve their experience in an educational environment. Particularly, the perception style is one of the most important dimensions of the learning styles since it describes the way students perceive the world as well as the kind of learning content they prefer. Several approaches to detect students´ perception style according to Felder´s model have been proposed. However, these approaches exhibit several limitations that make their implementation difficult. Thus, we propose a novel approach to detect the perception style of a student by analyzing his/her interaction with games, namely puzzle games. To carry out this detection, we track how students play a puzzle game and extract information about this interaction. Then, we train a Naive Bayes Classifier to infer the students´ perception style by using the information extracted. We have evaluated our proposed approach with 47 Computer Engineering students. Experimental results showed that the perception style was successfully predicted through the use of games, with an accuracy of 85%. Finally, we conclude that games are a promising environment where the students´ perception style can be detected.
Fil: Amandi, Analia Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina
Fil: Feldman, Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina
Fil: Monteserin, Ariel José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina
Materia
Digital Games
Learning Styles
Naive Bayes Classifier
Perception Style
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/6773

id CONICETDig_52dc5747a05f784ff971ece8fba06ee6
oai_identifier_str oai:ri.conicet.gov.ar:11336/6773
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Detecting Students' Perception Style by using GamesAmandi, Analia AdrianaFeldman, JuanMonteserin, Ariel JoséDigital GamesLearning StylesNaive Bayes ClassifierPerception Stylehttps://purl.org/becyt/ford/5.3https://purl.org/becyt/ford/5https://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Knowing students´ learning styles allows us to improve their experience in an educational environment. Particularly, the perception style is one of the most important dimensions of the learning styles since it describes the way students perceive the world as well as the kind of learning content they prefer. Several approaches to detect students´ perception style according to Felder´s model have been proposed. However, these approaches exhibit several limitations that make their implementation difficult. Thus, we propose a novel approach to detect the perception style of a student by analyzing his/her interaction with games, namely puzzle games. To carry out this detection, we track how students play a puzzle game and extract information about this interaction. Then, we train a Naive Bayes Classifier to infer the students´ perception style by using the information extracted. We have evaluated our proposed approach with 47 Computer Engineering students. Experimental results showed that the perception style was successfully predicted through the use of games, with an accuracy of 85%. Finally, we conclude that games are a promising environment where the students´ perception style can be detected.Fil: Amandi, Analia Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; ArgentinaFil: Feldman, Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; ArgentinaFil: Monteserin, Ariel José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; ArgentinaElsevier2014-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/6773Amandi, Analia Adriana; Feldman, Juan; Monteserin, Ariel José; Detecting Students' Perception Style by using Games; Elsevier; Computers and Education; 71; 2-2014; 14-220360-1315enginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0360131513002625info:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/altIdentifier/doi/10.1016/j.compedu.2013.09.007info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:08:06Zoai:ri.conicet.gov.ar:11336/6773instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:08:06.701CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Detecting Students' Perception Style by using Games
title Detecting Students' Perception Style by using Games
spellingShingle Detecting Students' Perception Style by using Games
Amandi, Analia Adriana
Digital Games
Learning Styles
Naive Bayes Classifier
Perception Style
title_short Detecting Students' Perception Style by using Games
title_full Detecting Students' Perception Style by using Games
title_fullStr Detecting Students' Perception Style by using Games
title_full_unstemmed Detecting Students' Perception Style by using Games
title_sort Detecting Students' Perception Style by using Games
dc.creator.none.fl_str_mv Amandi, Analia Adriana
Feldman, Juan
Monteserin, Ariel José
author Amandi, Analia Adriana
author_facet Amandi, Analia Adriana
Feldman, Juan
Monteserin, Ariel José
author_role author
author2 Feldman, Juan
Monteserin, Ariel José
author2_role author
author
dc.subject.none.fl_str_mv Digital Games
Learning Styles
Naive Bayes Classifier
Perception Style
topic Digital Games
Learning Styles
Naive Bayes Classifier
Perception Style
purl_subject.fl_str_mv https://purl.org/becyt/ford/5.3
https://purl.org/becyt/ford/5
https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Knowing students´ learning styles allows us to improve their experience in an educational environment. Particularly, the perception style is one of the most important dimensions of the learning styles since it describes the way students perceive the world as well as the kind of learning content they prefer. Several approaches to detect students´ perception style according to Felder´s model have been proposed. However, these approaches exhibit several limitations that make their implementation difficult. Thus, we propose a novel approach to detect the perception style of a student by analyzing his/her interaction with games, namely puzzle games. To carry out this detection, we track how students play a puzzle game and extract information about this interaction. Then, we train a Naive Bayes Classifier to infer the students´ perception style by using the information extracted. We have evaluated our proposed approach with 47 Computer Engineering students. Experimental results showed that the perception style was successfully predicted through the use of games, with an accuracy of 85%. Finally, we conclude that games are a promising environment where the students´ perception style can be detected.
Fil: Amandi, Analia Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina
Fil: Feldman, Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina
Fil: Monteserin, Ariel José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina
description Knowing students´ learning styles allows us to improve their experience in an educational environment. Particularly, the perception style is one of the most important dimensions of the learning styles since it describes the way students perceive the world as well as the kind of learning content they prefer. Several approaches to detect students´ perception style according to Felder´s model have been proposed. However, these approaches exhibit several limitations that make their implementation difficult. Thus, we propose a novel approach to detect the perception style of a student by analyzing his/her interaction with games, namely puzzle games. To carry out this detection, we track how students play a puzzle game and extract information about this interaction. Then, we train a Naive Bayes Classifier to infer the students´ perception style by using the information extracted. We have evaluated our proposed approach with 47 Computer Engineering students. Experimental results showed that the perception style was successfully predicted through the use of games, with an accuracy of 85%. Finally, we conclude that games are a promising environment where the students´ perception style can be detected.
publishDate 2014
dc.date.none.fl_str_mv 2014-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/6773
Amandi, Analia Adriana; Feldman, Juan; Monteserin, Ariel José; Detecting Students' Perception Style by using Games; Elsevier; Computers and Education; 71; 2-2014; 14-22
0360-1315
url http://hdl.handle.net/11336/6773
identifier_str_mv Amandi, Analia Adriana; Feldman, Juan; Monteserin, Ariel José; Detecting Students' Perception Style by using Games; Elsevier; Computers and Education; 71; 2-2014; 14-22
0360-1315
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0360131513002625
info:eu-repo/semantics/altIdentifier/doi/
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.compedu.2013.09.007
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842270031581282304
score 13.13397