Desarrollo de un clasificador Bayes Naive y una aplicación con datos del flujo vehicular en autopistas de Buenos Aires
- Autores
- Romero Ávila, Luis Raúl; Salas Morales, Héctor; Martin, Rodrigo; Rossi, Paula
- Año de publicación
- 2023
- Idioma
- español castellano
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Se desarrolló un modelo de clasificación para identificar los días laborables a partir del flujo vehicular en estaciones de peaje, considerando los registros de 2019 de las estaciones Illia y Alberti. Cada observación consistió en siete covariables: cuatro variables dicotómicas que identificaron cinco bloques horarios, una variable dicotómica para el sentido de circulación, una variable dicotómica para la estación de peaje, la cantidad de vehículos livianos y la cantidad de vehículos pesados, contabilizados en ambos casos para cada hora reloj, sentido de circulación y estación. Se definieron diez casos de estudio, considerando cada bloque horario y estación, entrenándose un clasificador de Bayes Naive que implementó la regla óptima de Bayes para la decisión de la variable respuesta. Las covariables que contabilizaron el flujo vehicular fueron modeladas como variables aleatorias continuas, estimándose su densidad a través del estimador no paramétrico de Rosenblatt-Parzen basado en núcleos gaussianos, cuya ventana se determinó por convalidación cruzada en diez iteraciones, buscando minimizar el error de clasificación. Cada uno de los estimadores finales se comparó con un estimador de regresión logística sin regularización, obteniendo un menor error de clasificación en el estimador de Bayes Naive en ocho de los diez casos estudiados.
A model of classification was developed to identify working days based on traffic flow in tollbooths, considering 2019 data of Illia and Alberti stations. Each observation consisted in seven covariates: four dummies to identify five blocks of time, one dichotomic variable for traffic way, one dichotomic variable to identify tollbooth and the quantity of both heavy and light vehicles, counted for each hour, traffic way and toll station. It was defined ten cases of study, one for each combination of toll station and block of time. It was fitted a Naive Bayes classifier that implemented Bayes' optimal classifier to decide the value of target in each case. The variables that counted traffic flow were modeled as continuous random variables, estimating their density functions through no-parametric Parzen–Rosenblatt window method using gaussian kernel. The wide of the window was found with ten folds cross validation, looking for reduce misclassification. Each of final estimator was compared with a non-regularized logistic regression estimator, resulting in less classification error for Naive Bayes classifier in eight of ten cases.
Sociedad Argentina de Informática e Investigación Operativa - Materia
-
Ciencias Informáticas
estimación no paramétrica
Naive Bayes
aprendizaje supervisado
flujo vehicular - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/166455
Ver los metadatos del registro completo
id |
SEDICI_528060026e3a279c1c183b78424302be |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/166455 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Desarrollo de un clasificador Bayes Naive y una aplicación con datos del flujo vehicular en autopistas de Buenos AiresEspañolRomero Ávila, Luis RaúlSalas Morales, HéctorMartin, RodrigoRossi, PaulaCiencias Informáticasestimación no paramétricaNaive Bayesaprendizaje supervisadoflujo vehicularSe desarrolló un modelo de clasificación para identificar los días laborables a partir del flujo vehicular en estaciones de peaje, considerando los registros de 2019 de las estaciones Illia y Alberti. Cada observación consistió en siete covariables: cuatro variables dicotómicas que identificaron cinco bloques horarios, una variable dicotómica para el sentido de circulación, una variable dicotómica para la estación de peaje, la cantidad de vehículos livianos y la cantidad de vehículos pesados, contabilizados en ambos casos para cada hora reloj, sentido de circulación y estación. Se definieron diez casos de estudio, considerando cada bloque horario y estación, entrenándose un clasificador de Bayes Naive que implementó la regla óptima de Bayes para la decisión de la variable respuesta. Las covariables que contabilizaron el flujo vehicular fueron modeladas como variables aleatorias continuas, estimándose su densidad a través del estimador no paramétrico de Rosenblatt-Parzen basado en núcleos gaussianos, cuya ventana se determinó por convalidación cruzada en diez iteraciones, buscando minimizar el error de clasificación. Cada uno de los estimadores finales se comparó con un estimador de regresión logística sin regularización, obteniendo un menor error de clasificación en el estimador de Bayes Naive en ocho de los diez casos estudiados.A model of classification was developed to identify working days based on traffic flow in tollbooths, considering 2019 data of Illia and Alberti stations. Each observation consisted in seven covariates: four dummies to identify five blocks of time, one dichotomic variable for traffic way, one dichotomic variable to identify tollbooth and the quantity of both heavy and light vehicles, counted for each hour, traffic way and toll station. It was defined ten cases of study, one for each combination of toll station and block of time. It was fitted a Naive Bayes classifier that implemented Bayes' optimal classifier to decide the value of target in each case. The variables that counted traffic flow were modeled as continuous random variables, estimating their density functions through no-parametric Parzen–Rosenblatt window method using gaussian kernel. The wide of the window was found with ten folds cross validation, looking for reduce misclassification. Each of final estimator was compared with a non-regularized logistic regression estimator, resulting in less classification error for Naive Bayes classifier in eight of ten cases.Sociedad Argentina de Informática e Investigación Operativa2023-09info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf28-42http://sedici.unlp.edu.ar/handle/10915/166455spainfo:eu-repo/semantics/altIdentifier/url/https://publicaciones.sadio.org.ar/index.php/JAIIO/article/view/514info:eu-repo/semantics/altIdentifier/issn/2451-7496info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:43:51Zoai:sedici.unlp.edu.ar:10915/166455Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:43:52.051SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Desarrollo de un clasificador Bayes Naive y una aplicación con datos del flujo vehicular en autopistas de Buenos Aires Español |
title |
Desarrollo de un clasificador Bayes Naive y una aplicación con datos del flujo vehicular en autopistas de Buenos Aires |
spellingShingle |
Desarrollo de un clasificador Bayes Naive y una aplicación con datos del flujo vehicular en autopistas de Buenos Aires Romero Ávila, Luis Raúl Ciencias Informáticas estimación no paramétrica Naive Bayes aprendizaje supervisado flujo vehicular |
title_short |
Desarrollo de un clasificador Bayes Naive y una aplicación con datos del flujo vehicular en autopistas de Buenos Aires |
title_full |
Desarrollo de un clasificador Bayes Naive y una aplicación con datos del flujo vehicular en autopistas de Buenos Aires |
title_fullStr |
Desarrollo de un clasificador Bayes Naive y una aplicación con datos del flujo vehicular en autopistas de Buenos Aires |
title_full_unstemmed |
Desarrollo de un clasificador Bayes Naive y una aplicación con datos del flujo vehicular en autopistas de Buenos Aires |
title_sort |
Desarrollo de un clasificador Bayes Naive y una aplicación con datos del flujo vehicular en autopistas de Buenos Aires |
dc.creator.none.fl_str_mv |
Romero Ávila, Luis Raúl Salas Morales, Héctor Martin, Rodrigo Rossi, Paula |
author |
Romero Ávila, Luis Raúl |
author_facet |
Romero Ávila, Luis Raúl Salas Morales, Héctor Martin, Rodrigo Rossi, Paula |
author_role |
author |
author2 |
Salas Morales, Héctor Martin, Rodrigo Rossi, Paula |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas estimación no paramétrica Naive Bayes aprendizaje supervisado flujo vehicular |
topic |
Ciencias Informáticas estimación no paramétrica Naive Bayes aprendizaje supervisado flujo vehicular |
dc.description.none.fl_txt_mv |
Se desarrolló un modelo de clasificación para identificar los días laborables a partir del flujo vehicular en estaciones de peaje, considerando los registros de 2019 de las estaciones Illia y Alberti. Cada observación consistió en siete covariables: cuatro variables dicotómicas que identificaron cinco bloques horarios, una variable dicotómica para el sentido de circulación, una variable dicotómica para la estación de peaje, la cantidad de vehículos livianos y la cantidad de vehículos pesados, contabilizados en ambos casos para cada hora reloj, sentido de circulación y estación. Se definieron diez casos de estudio, considerando cada bloque horario y estación, entrenándose un clasificador de Bayes Naive que implementó la regla óptima de Bayes para la decisión de la variable respuesta. Las covariables que contabilizaron el flujo vehicular fueron modeladas como variables aleatorias continuas, estimándose su densidad a través del estimador no paramétrico de Rosenblatt-Parzen basado en núcleos gaussianos, cuya ventana se determinó por convalidación cruzada en diez iteraciones, buscando minimizar el error de clasificación. Cada uno de los estimadores finales se comparó con un estimador de regresión logística sin regularización, obteniendo un menor error de clasificación en el estimador de Bayes Naive en ocho de los diez casos estudiados. A model of classification was developed to identify working days based on traffic flow in tollbooths, considering 2019 data of Illia and Alberti stations. Each observation consisted in seven covariates: four dummies to identify five blocks of time, one dichotomic variable for traffic way, one dichotomic variable to identify tollbooth and the quantity of both heavy and light vehicles, counted for each hour, traffic way and toll station. It was defined ten cases of study, one for each combination of toll station and block of time. It was fitted a Naive Bayes classifier that implemented Bayes' optimal classifier to decide the value of target in each case. The variables that counted traffic flow were modeled as continuous random variables, estimating their density functions through no-parametric Parzen–Rosenblatt window method using gaussian kernel. The wide of the window was found with ten folds cross validation, looking for reduce misclassification. Each of final estimator was compared with a non-regularized logistic regression estimator, resulting in less classification error for Naive Bayes classifier in eight of ten cases. Sociedad Argentina de Informática e Investigación Operativa |
description |
Se desarrolló un modelo de clasificación para identificar los días laborables a partir del flujo vehicular en estaciones de peaje, considerando los registros de 2019 de las estaciones Illia y Alberti. Cada observación consistió en siete covariables: cuatro variables dicotómicas que identificaron cinco bloques horarios, una variable dicotómica para el sentido de circulación, una variable dicotómica para la estación de peaje, la cantidad de vehículos livianos y la cantidad de vehículos pesados, contabilizados en ambos casos para cada hora reloj, sentido de circulación y estación. Se definieron diez casos de estudio, considerando cada bloque horario y estación, entrenándose un clasificador de Bayes Naive que implementó la regla óptima de Bayes para la decisión de la variable respuesta. Las covariables que contabilizaron el flujo vehicular fueron modeladas como variables aleatorias continuas, estimándose su densidad a través del estimador no paramétrico de Rosenblatt-Parzen basado en núcleos gaussianos, cuya ventana se determinó por convalidación cruzada en diez iteraciones, buscando minimizar el error de clasificación. Cada uno de los estimadores finales se comparó con un estimador de regresión logística sin regularización, obteniendo un menor error de clasificación en el estimador de Bayes Naive en ocho de los diez casos estudiados. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/166455 |
url |
http://sedici.unlp.edu.ar/handle/10915/166455 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://publicaciones.sadio.org.ar/index.php/JAIIO/article/view/514 info:eu-repo/semantics/altIdentifier/issn/2451-7496 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 28-42 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616306786041856 |
score |
13.070432 |