Meta-analysis of genome-wide association from genomic prediction models
- Autores
- Bernal Rubio, Yeni Liliana; Gualdron Duarte, Jose Luis; Bates, R. O.; Ernst, C. W.; Nonneman, D.; Rohrer, G. A.; King, A.; Shackelford, S. D.; Wheeler, T. L.; Cantet, Rodolfo Juan Carlos; Steibel, J. P.
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Genome-wide association (GWA) studies based on GBLUP models are a common practice in animal breeding. However, effect sizes of GWA tests are small, requiring larger sample sizes to enhance power of detection of rare variants. Because of difficulties in increasing sample size in animal populations, one alternative is to implement a meta-analysis (MA), combining information and results from independent GWA studies. Although this methodology has been used widely in human genetics, implementation in animal breeding has been limited. Thus, we present methods to implement a MA of GWA, describing the proper approach to compute weights derived from multiple genomic evaluations based on animal-centric GBLUP models. Application to real datasets shows that MA increases power of detection of associations in comparison with population-level GWA, allowing for population structure and heterogeneity of variance components across populations to be accounted for. Another advantage of MA is that it does not require access to genotype data that is required for a joint analysis. Scripts related to the implementation of this approach, which consider the strength of association as well as the sign, are distributed and thus account for heterogeneity in association phase between QTL and SNPs. Thus, MA of GWA is an attractive alternative to summarizing results from multiple genomic studies, avoiding restrictions with genotype data sharing, definition of fixed effects and different scales of measurement of evaluated traits.
Fil: Bernal Rubio, Yeni Liliana. Universidad de Buenos Aires. Facultad de Agronomia. Departamento de Producción Animal; Argentina. Michigan State University; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Gualdron Duarte, Jose Luis. Universidad de Buenos Aires. Facultad de Agronomia. Departamento de Producción Animal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Bates, R. O.. Universidad de Buenos Aires. Facultad de Agronomia. Departamento de Producción Animal; Argentina
Fil: Ernst, C. W.. Universidad de Buenos Aires. Facultad de Agronomia. Departamento de Producción Animal; Argentina
Fil: Nonneman, D.. United States Department of Agriculture. Agricultural Research Service; Estados Unidos
Fil: Rohrer, G. A.. United States Department of Agriculture. Agricultural Research Service; Estados Unidos
Fil: King, A.. United States Department of Agriculture. Agricultural Research Service; Estados Unidos
Fil: Shackelford, S. D.. United States Department of Agriculture. Agricultural Research Service; Estados Unidos
Fil: Wheeler, T. L.. United States Department of Agriculture. Agricultural Research Service; Estados Unidos
Fil: Cantet, Rodolfo Juan Carlos. Michigan State University; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Steibel, J. P.. Universidad de Buenos Aires. Facultad de Agronomia. Departamento de Producción Animal; Argentina. Michigan State University; Estados Unidos - Materia
-
Gblup
Genome-Wide Association Studies
Multiple Populations - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/30191
Ver los metadatos del registro completo
id |
CONICETDig_52b92111d9aeb52128b63843d5438b4b |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/30191 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Meta-analysis of genome-wide association from genomic prediction modelsBernal Rubio, Yeni LilianaGualdron Duarte, Jose LuisBates, R. O.Ernst, C. W.Nonneman, D.Rohrer, G. A.King, A.Shackelford, S. D.Wheeler, T. L.Cantet, Rodolfo Juan CarlosSteibel, J. P.GblupGenome-Wide Association StudiesMultiple Populationshttps://purl.org/becyt/ford/4.2https://purl.org/becyt/ford/4Genome-wide association (GWA) studies based on GBLUP models are a common practice in animal breeding. However, effect sizes of GWA tests are small, requiring larger sample sizes to enhance power of detection of rare variants. Because of difficulties in increasing sample size in animal populations, one alternative is to implement a meta-analysis (MA), combining information and results from independent GWA studies. Although this methodology has been used widely in human genetics, implementation in animal breeding has been limited. Thus, we present methods to implement a MA of GWA, describing the proper approach to compute weights derived from multiple genomic evaluations based on animal-centric GBLUP models. Application to real datasets shows that MA increases power of detection of associations in comparison with population-level GWA, allowing for population structure and heterogeneity of variance components across populations to be accounted for. Another advantage of MA is that it does not require access to genotype data that is required for a joint analysis. Scripts related to the implementation of this approach, which consider the strength of association as well as the sign, are distributed and thus account for heterogeneity in association phase between QTL and SNPs. Thus, MA of GWA is an attractive alternative to summarizing results from multiple genomic studies, avoiding restrictions with genotype data sharing, definition of fixed effects and different scales of measurement of evaluated traits.Fil: Bernal Rubio, Yeni Liliana. Universidad de Buenos Aires. Facultad de Agronomia. Departamento de Producción Animal; Argentina. Michigan State University; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Gualdron Duarte, Jose Luis. Universidad de Buenos Aires. Facultad de Agronomia. Departamento de Producción Animal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Bates, R. O.. Universidad de Buenos Aires. Facultad de Agronomia. Departamento de Producción Animal; ArgentinaFil: Ernst, C. W.. Universidad de Buenos Aires. Facultad de Agronomia. Departamento de Producción Animal; ArgentinaFil: Nonneman, D.. United States Department of Agriculture. Agricultural Research Service; Estados UnidosFil: Rohrer, G. A.. United States Department of Agriculture. Agricultural Research Service; Estados UnidosFil: King, A.. United States Department of Agriculture. Agricultural Research Service; Estados UnidosFil: Shackelford, S. D.. United States Department of Agriculture. Agricultural Research Service; Estados UnidosFil: Wheeler, T. L.. United States Department of Agriculture. Agricultural Research Service; Estados UnidosFil: Cantet, Rodolfo Juan Carlos. Michigan State University; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Steibel, J. P.. Universidad de Buenos Aires. Facultad de Agronomia. Departamento de Producción Animal; Argentina. Michigan State University; Estados UnidosWiley2015-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/30191Bernal Rubio, Yeni Liliana; Gualdron Duarte, Jose Luis; Bates, R. O.; Ernst, C. W.; Nonneman, D.; et al.; Meta-analysis of genome-wide association from genomic prediction models; Wiley; Animal Genetics; 47; 1; 11-2015; 36-480268-9146CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1111/age.12378info:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1111/age.12378/abstractinfo:eu-repo/semantics/altIdentifier/url/https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4738412/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:33:12Zoai:ri.conicet.gov.ar:11336/30191instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:33:13.127CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Meta-analysis of genome-wide association from genomic prediction models |
title |
Meta-analysis of genome-wide association from genomic prediction models |
spellingShingle |
Meta-analysis of genome-wide association from genomic prediction models Bernal Rubio, Yeni Liliana Gblup Genome-Wide Association Studies Multiple Populations |
title_short |
Meta-analysis of genome-wide association from genomic prediction models |
title_full |
Meta-analysis of genome-wide association from genomic prediction models |
title_fullStr |
Meta-analysis of genome-wide association from genomic prediction models |
title_full_unstemmed |
Meta-analysis of genome-wide association from genomic prediction models |
title_sort |
Meta-analysis of genome-wide association from genomic prediction models |
dc.creator.none.fl_str_mv |
Bernal Rubio, Yeni Liliana Gualdron Duarte, Jose Luis Bates, R. O. Ernst, C. W. Nonneman, D. Rohrer, G. A. King, A. Shackelford, S. D. Wheeler, T. L. Cantet, Rodolfo Juan Carlos Steibel, J. P. |
author |
Bernal Rubio, Yeni Liliana |
author_facet |
Bernal Rubio, Yeni Liliana Gualdron Duarte, Jose Luis Bates, R. O. Ernst, C. W. Nonneman, D. Rohrer, G. A. King, A. Shackelford, S. D. Wheeler, T. L. Cantet, Rodolfo Juan Carlos Steibel, J. P. |
author_role |
author |
author2 |
Gualdron Duarte, Jose Luis Bates, R. O. Ernst, C. W. Nonneman, D. Rohrer, G. A. King, A. Shackelford, S. D. Wheeler, T. L. Cantet, Rodolfo Juan Carlos Steibel, J. P. |
author2_role |
author author author author author author author author author author |
dc.subject.none.fl_str_mv |
Gblup Genome-Wide Association Studies Multiple Populations |
topic |
Gblup Genome-Wide Association Studies Multiple Populations |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/4.2 https://purl.org/becyt/ford/4 |
dc.description.none.fl_txt_mv |
Genome-wide association (GWA) studies based on GBLUP models are a common practice in animal breeding. However, effect sizes of GWA tests are small, requiring larger sample sizes to enhance power of detection of rare variants. Because of difficulties in increasing sample size in animal populations, one alternative is to implement a meta-analysis (MA), combining information and results from independent GWA studies. Although this methodology has been used widely in human genetics, implementation in animal breeding has been limited. Thus, we present methods to implement a MA of GWA, describing the proper approach to compute weights derived from multiple genomic evaluations based on animal-centric GBLUP models. Application to real datasets shows that MA increases power of detection of associations in comparison with population-level GWA, allowing for population structure and heterogeneity of variance components across populations to be accounted for. Another advantage of MA is that it does not require access to genotype data that is required for a joint analysis. Scripts related to the implementation of this approach, which consider the strength of association as well as the sign, are distributed and thus account for heterogeneity in association phase between QTL and SNPs. Thus, MA of GWA is an attractive alternative to summarizing results from multiple genomic studies, avoiding restrictions with genotype data sharing, definition of fixed effects and different scales of measurement of evaluated traits. Fil: Bernal Rubio, Yeni Liliana. Universidad de Buenos Aires. Facultad de Agronomia. Departamento de Producción Animal; Argentina. Michigan State University; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Gualdron Duarte, Jose Luis. Universidad de Buenos Aires. Facultad de Agronomia. Departamento de Producción Animal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Bates, R. O.. Universidad de Buenos Aires. Facultad de Agronomia. Departamento de Producción Animal; Argentina Fil: Ernst, C. W.. Universidad de Buenos Aires. Facultad de Agronomia. Departamento de Producción Animal; Argentina Fil: Nonneman, D.. United States Department of Agriculture. Agricultural Research Service; Estados Unidos Fil: Rohrer, G. A.. United States Department of Agriculture. Agricultural Research Service; Estados Unidos Fil: King, A.. United States Department of Agriculture. Agricultural Research Service; Estados Unidos Fil: Shackelford, S. D.. United States Department of Agriculture. Agricultural Research Service; Estados Unidos Fil: Wheeler, T. L.. United States Department of Agriculture. Agricultural Research Service; Estados Unidos Fil: Cantet, Rodolfo Juan Carlos. Michigan State University; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Steibel, J. P.. Universidad de Buenos Aires. Facultad de Agronomia. Departamento de Producción Animal; Argentina. Michigan State University; Estados Unidos |
description |
Genome-wide association (GWA) studies based on GBLUP models are a common practice in animal breeding. However, effect sizes of GWA tests are small, requiring larger sample sizes to enhance power of detection of rare variants. Because of difficulties in increasing sample size in animal populations, one alternative is to implement a meta-analysis (MA), combining information and results from independent GWA studies. Although this methodology has been used widely in human genetics, implementation in animal breeding has been limited. Thus, we present methods to implement a MA of GWA, describing the proper approach to compute weights derived from multiple genomic evaluations based on animal-centric GBLUP models. Application to real datasets shows that MA increases power of detection of associations in comparison with population-level GWA, allowing for population structure and heterogeneity of variance components across populations to be accounted for. Another advantage of MA is that it does not require access to genotype data that is required for a joint analysis. Scripts related to the implementation of this approach, which consider the strength of association as well as the sign, are distributed and thus account for heterogeneity in association phase between QTL and SNPs. Thus, MA of GWA is an attractive alternative to summarizing results from multiple genomic studies, avoiding restrictions with genotype data sharing, definition of fixed effects and different scales of measurement of evaluated traits. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/30191 Bernal Rubio, Yeni Liliana; Gualdron Duarte, Jose Luis; Bates, R. O.; Ernst, C. W.; Nonneman, D.; et al.; Meta-analysis of genome-wide association from genomic prediction models; Wiley; Animal Genetics; 47; 1; 11-2015; 36-48 0268-9146 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/30191 |
identifier_str_mv |
Bernal Rubio, Yeni Liliana; Gualdron Duarte, Jose Luis; Bates, R. O.; Ernst, C. W.; Nonneman, D.; et al.; Meta-analysis of genome-wide association from genomic prediction models; Wiley; Animal Genetics; 47; 1; 11-2015; 36-48 0268-9146 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1111/age.12378 info:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1111/age.12378/abstract info:eu-repo/semantics/altIdentifier/url/https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4738412/ |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Wiley |
publisher.none.fl_str_mv |
Wiley |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613018569146368 |
score |
13.070432 |