Weighted projections into closed subspaces

Autores
Corach, Gustavo; Fongi, Guillermina; Maestripieri, Alejandra Laura
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study A-projections, i.e. operators on a Hilbert space H which act as projections when a seminorm is considered in H. The A-projections were introduced by Mitra and Rao (1974) for finite-dimensional spaces. We relate this concept to the theory of compatibility between positive operators and closed subspaces of H. We also study the relationship between weighted least squares problems and compatibility.
Fil: Corach, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática; Argentina
Fil: Fongi, Guillermina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática; Argentina
Fil: Maestripieri, Alejandra Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática; Argentina
Materia
PROYECCION
COMPATIBLIDAD
SEMINORMA
Nivel de accesibilidad
acceso abierto
Condiciones de uso
Atribución-NoComercial-CompartirIgual 2.5 Argentina (CC BY-NC-SA 2.5 AR)
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/3364

id CONICETDig_51cc76263a24a63eb011dc7ec97ca99e
oai_identifier_str oai:ri.conicet.gov.ar:11336/3364
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Weighted projections into closed subspacesCorach, GustavoFongi, GuillerminaMaestripieri, Alejandra LauraPROYECCIONCOMPATIBLIDADSEMINORMAhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study A-projections, i.e. operators on a Hilbert space H which act as projections when a seminorm is considered in H. The A-projections were introduced by Mitra and Rao (1974) for finite-dimensional spaces. We relate this concept to the theory of compatibility between positive operators and closed subspaces of H. We also study the relationship between weighted least squares problems and compatibility.Fil: Corach, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática; ArgentinaFil: Fongi, Guillermina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática; ArgentinaFil: Maestripieri, Alejandra Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática; ArgentinaPolish Acad Sciences Inst Mathematics2013-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/3364Corach, Gustavo; Fongi, Guillermina; Maestripieri, Alejandra Laura; Weighted projections into closed subspaces; Polish Acad Sciences Inst Mathematics; Studia Mathematica; 216; 8-2013; 131-1480039-3223enginfo:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/altIdentifier/url/http://arxiv.org/abs/1305.6357info:eu-repo/semantics/altIdentifier/doi/10.4064/sm216-2-3info:eu-repo/semantics/openAccessAtribución-NoComercial-CompartirIgual 2.5 Argentina (CC BY-NC-SA 2.5 AR)https://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:56:08Zoai:ri.conicet.gov.ar:11336/3364instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:56:09.02CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Weighted projections into closed subspaces
title Weighted projections into closed subspaces
spellingShingle Weighted projections into closed subspaces
Corach, Gustavo
PROYECCION
COMPATIBLIDAD
SEMINORMA
title_short Weighted projections into closed subspaces
title_full Weighted projections into closed subspaces
title_fullStr Weighted projections into closed subspaces
title_full_unstemmed Weighted projections into closed subspaces
title_sort Weighted projections into closed subspaces
dc.creator.none.fl_str_mv Corach, Gustavo
Fongi, Guillermina
Maestripieri, Alejandra Laura
author Corach, Gustavo
author_facet Corach, Gustavo
Fongi, Guillermina
Maestripieri, Alejandra Laura
author_role author
author2 Fongi, Guillermina
Maestripieri, Alejandra Laura
author2_role author
author
dc.subject.none.fl_str_mv PROYECCION
COMPATIBLIDAD
SEMINORMA
topic PROYECCION
COMPATIBLIDAD
SEMINORMA
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We study A-projections, i.e. operators on a Hilbert space H which act as projections when a seminorm is considered in H. The A-projections were introduced by Mitra and Rao (1974) for finite-dimensional spaces. We relate this concept to the theory of compatibility between positive operators and closed subspaces of H. We also study the relationship between weighted least squares problems and compatibility.
Fil: Corach, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática; Argentina
Fil: Fongi, Guillermina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática; Argentina
Fil: Maestripieri, Alejandra Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática; Argentina
description We study A-projections, i.e. operators on a Hilbert space H which act as projections when a seminorm is considered in H. The A-projections were introduced by Mitra and Rao (1974) for finite-dimensional spaces. We relate this concept to the theory of compatibility between positive operators and closed subspaces of H. We also study the relationship between weighted least squares problems and compatibility.
publishDate 2013
dc.date.none.fl_str_mv 2013-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/3364
Corach, Gustavo; Fongi, Guillermina; Maestripieri, Alejandra Laura; Weighted projections into closed subspaces; Polish Acad Sciences Inst Mathematics; Studia Mathematica; 216; 8-2013; 131-148
0039-3223
url http://hdl.handle.net/11336/3364
identifier_str_mv Corach, Gustavo; Fongi, Guillermina; Maestripieri, Alejandra Laura; Weighted projections into closed subspaces; Polish Acad Sciences Inst Mathematics; Studia Mathematica; 216; 8-2013; 131-148
0039-3223
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/
info:eu-repo/semantics/altIdentifier/url/http://arxiv.org/abs/1305.6357
info:eu-repo/semantics/altIdentifier/doi/10.4064/sm216-2-3
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
Atribución-NoComercial-CompartirIgual 2.5 Argentina (CC BY-NC-SA 2.5 AR)
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv Atribución-NoComercial-CompartirIgual 2.5 Argentina (CC BY-NC-SA 2.5 AR)
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Polish Acad Sciences Inst Mathematics
publisher.none.fl_str_mv Polish Acad Sciences Inst Mathematics
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613688348114944
score 13.070432