Development of a Kinematical Model to Study the Aerodynamics of Flapping-Wings

Autores
Roccia, Bruno Antonio; Preidikman, Sergio; Massa, Julio Cesar; Mook, Dean T.
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The kinematics that characterizes the “natural flight” of insects is quite complex. It involves simultaneous rotations, oscillations and significant changes in the angle of attack. All this permits the wings to follow an extremely complex trajectory producing different flight mechanisms that are efficient at low to moderate Reynolds numbers. Some of these mechanisms, such as the delayed stall, the additional circulation generated by the rotation of the wing, and the wake capture amongst others, offer unique advantages with respect to the well-known fixed-wing aerial vehicles. Such advantages are better lift and thrust generation without the need to increase weight. This paper presents a general kinematical model that permits studying the movements of the wings of a scale robot of a house fly, the ‘RoboFly’, built at UC Berkeley, USA. Additionally, this general kinematical model allows studying the kinematics of the wings of a flying insect considering both the body orientation and the stroke plane orientation of the creature in the 3D space. This work provides a nexus between the descriptive language used by biologists and the predictive language used by engineers. This connection between scientific disciplines allows one to study and characterize the principal kinematic parameters that intervene in a stroke cycle, as well as to determine how these variables modify the trajectories of the material points on the wings.
Fil: Roccia, Bruno Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ingeniería; Argentina
Fil: Preidikman, Sergio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina
Fil: Massa, Julio Cesar. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina
Fil: Mook, Dean T.. Virginia Polytechnic Institute; Estados Unidos
Materia
FLAPPING WINGS
KINEMATICS
UNSTEADY AERODYNAMICS
BIO-INSPIRATION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/241673

id CONICETDig_509ebfa440046eb386caad918f0b3eb3
oai_identifier_str oai:ri.conicet.gov.ar:11336/241673
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Development of a Kinematical Model to Study the Aerodynamics of Flapping-WingsRoccia, Bruno AntonioPreidikman, SergioMassa, Julio CesarMook, Dean T.FLAPPING WINGSKINEMATICSUNSTEADY AERODYNAMICSBIO-INSPIRATIONhttps://purl.org/becyt/ford/2.11https://purl.org/becyt/ford/2The kinematics that characterizes the “natural flight” of insects is quite complex. It involves simultaneous rotations, oscillations and significant changes in the angle of attack. All this permits the wings to follow an extremely complex trajectory producing different flight mechanisms that are efficient at low to moderate Reynolds numbers. Some of these mechanisms, such as the delayed stall, the additional circulation generated by the rotation of the wing, and the wake capture amongst others, offer unique advantages with respect to the well-known fixed-wing aerial vehicles. Such advantages are better lift and thrust generation without the need to increase weight. This paper presents a general kinematical model that permits studying the movements of the wings of a scale robot of a house fly, the ‘RoboFly’, built at UC Berkeley, USA. Additionally, this general kinematical model allows studying the kinematics of the wings of a flying insect considering both the body orientation and the stroke plane orientation of the creature in the 3D space. This work provides a nexus between the descriptive language used by biologists and the predictive language used by engineers. This connection between scientific disciplines allows one to study and characterize the principal kinematic parameters that intervene in a stroke cycle, as well as to determine how these variables modify the trajectories of the material points on the wings.Fil: Roccia, Bruno Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ingeniería; ArgentinaFil: Preidikman, Sergio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; ArgentinaFil: Massa, Julio Cesar. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; ArgentinaFil: Mook, Dean T.. Virginia Polytechnic Institute; Estados UnidosSAGE Publications2011-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/241673Roccia, Bruno Antonio; Preidikman, Sergio; Massa, Julio Cesar; Mook, Dean T.; Development of a Kinematical Model to Study the Aerodynamics of Flapping-Wings; SAGE Publications; International Journal of Micro Air Vehicles; 3; 2; 6-2011; 61-881756-82931756-8307CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://journals.sagepub.com/doi/10.1260/1756-8293.3.2.61info:eu-repo/semantics/altIdentifier/doi/10.1260/1756-8293.3.2.61info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:55:14Zoai:ri.conicet.gov.ar:11336/241673instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:55:14.776CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Development of a Kinematical Model to Study the Aerodynamics of Flapping-Wings
title Development of a Kinematical Model to Study the Aerodynamics of Flapping-Wings
spellingShingle Development of a Kinematical Model to Study the Aerodynamics of Flapping-Wings
Roccia, Bruno Antonio
FLAPPING WINGS
KINEMATICS
UNSTEADY AERODYNAMICS
BIO-INSPIRATION
title_short Development of a Kinematical Model to Study the Aerodynamics of Flapping-Wings
title_full Development of a Kinematical Model to Study the Aerodynamics of Flapping-Wings
title_fullStr Development of a Kinematical Model to Study the Aerodynamics of Flapping-Wings
title_full_unstemmed Development of a Kinematical Model to Study the Aerodynamics of Flapping-Wings
title_sort Development of a Kinematical Model to Study the Aerodynamics of Flapping-Wings
dc.creator.none.fl_str_mv Roccia, Bruno Antonio
Preidikman, Sergio
Massa, Julio Cesar
Mook, Dean T.
author Roccia, Bruno Antonio
author_facet Roccia, Bruno Antonio
Preidikman, Sergio
Massa, Julio Cesar
Mook, Dean T.
author_role author
author2 Preidikman, Sergio
Massa, Julio Cesar
Mook, Dean T.
author2_role author
author
author
dc.subject.none.fl_str_mv FLAPPING WINGS
KINEMATICS
UNSTEADY AERODYNAMICS
BIO-INSPIRATION
topic FLAPPING WINGS
KINEMATICS
UNSTEADY AERODYNAMICS
BIO-INSPIRATION
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.11
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv The kinematics that characterizes the “natural flight” of insects is quite complex. It involves simultaneous rotations, oscillations and significant changes in the angle of attack. All this permits the wings to follow an extremely complex trajectory producing different flight mechanisms that are efficient at low to moderate Reynolds numbers. Some of these mechanisms, such as the delayed stall, the additional circulation generated by the rotation of the wing, and the wake capture amongst others, offer unique advantages with respect to the well-known fixed-wing aerial vehicles. Such advantages are better lift and thrust generation without the need to increase weight. This paper presents a general kinematical model that permits studying the movements of the wings of a scale robot of a house fly, the ‘RoboFly’, built at UC Berkeley, USA. Additionally, this general kinematical model allows studying the kinematics of the wings of a flying insect considering both the body orientation and the stroke plane orientation of the creature in the 3D space. This work provides a nexus between the descriptive language used by biologists and the predictive language used by engineers. This connection between scientific disciplines allows one to study and characterize the principal kinematic parameters that intervene in a stroke cycle, as well as to determine how these variables modify the trajectories of the material points on the wings.
Fil: Roccia, Bruno Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ingeniería; Argentina
Fil: Preidikman, Sergio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina
Fil: Massa, Julio Cesar. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina
Fil: Mook, Dean T.. Virginia Polytechnic Institute; Estados Unidos
description The kinematics that characterizes the “natural flight” of insects is quite complex. It involves simultaneous rotations, oscillations and significant changes in the angle of attack. All this permits the wings to follow an extremely complex trajectory producing different flight mechanisms that are efficient at low to moderate Reynolds numbers. Some of these mechanisms, such as the delayed stall, the additional circulation generated by the rotation of the wing, and the wake capture amongst others, offer unique advantages with respect to the well-known fixed-wing aerial vehicles. Such advantages are better lift and thrust generation without the need to increase weight. This paper presents a general kinematical model that permits studying the movements of the wings of a scale robot of a house fly, the ‘RoboFly’, built at UC Berkeley, USA. Additionally, this general kinematical model allows studying the kinematics of the wings of a flying insect considering both the body orientation and the stroke plane orientation of the creature in the 3D space. This work provides a nexus between the descriptive language used by biologists and the predictive language used by engineers. This connection between scientific disciplines allows one to study and characterize the principal kinematic parameters that intervene in a stroke cycle, as well as to determine how these variables modify the trajectories of the material points on the wings.
publishDate 2011
dc.date.none.fl_str_mv 2011-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/241673
Roccia, Bruno Antonio; Preidikman, Sergio; Massa, Julio Cesar; Mook, Dean T.; Development of a Kinematical Model to Study the Aerodynamics of Flapping-Wings; SAGE Publications; International Journal of Micro Air Vehicles; 3; 2; 6-2011; 61-88
1756-8293
1756-8307
CONICET Digital
CONICET
url http://hdl.handle.net/11336/241673
identifier_str_mv Roccia, Bruno Antonio; Preidikman, Sergio; Massa, Julio Cesar; Mook, Dean T.; Development of a Kinematical Model to Study the Aerodynamics of Flapping-Wings; SAGE Publications; International Journal of Micro Air Vehicles; 3; 2; 6-2011; 61-88
1756-8293
1756-8307
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://journals.sagepub.com/doi/10.1260/1756-8293.3.2.61
info:eu-repo/semantics/altIdentifier/doi/10.1260/1756-8293.3.2.61
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv SAGE Publications
publisher.none.fl_str_mv SAGE Publications
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269332598423552
score 13.13397