Development of a Kinematical Model to Study the Aerodynamics of Flapping-Wings
- Autores
- Roccia, Bruno Antonio; Preidikman, Sergio; Massa, Julio Cesar; Mook, Dean T.
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The kinematics that characterizes the “natural flight” of insects is quite complex. It involves simultaneous rotations, oscillations and significant changes in the angle of attack. All this permits the wings to follow an extremely complex trajectory producing different flight mechanisms that are efficient at low to moderate Reynolds numbers. Some of these mechanisms, such as the delayed stall, the additional circulation generated by the rotation of the wing, and the wake capture amongst others, offer unique advantages with respect to the well-known fixed-wing aerial vehicles. Such advantages are better lift and thrust generation without the need to increase weight. This paper presents a general kinematical model that permits studying the movements of the wings of a scale robot of a house fly, the ‘RoboFly’, built at UC Berkeley, USA. Additionally, this general kinematical model allows studying the kinematics of the wings of a flying insect considering both the body orientation and the stroke plane orientation of the creature in the 3D space. This work provides a nexus between the descriptive language used by biologists and the predictive language used by engineers. This connection between scientific disciplines allows one to study and characterize the principal kinematic parameters that intervene in a stroke cycle, as well as to determine how these variables modify the trajectories of the material points on the wings.
Fil: Roccia, Bruno Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ingeniería; Argentina
Fil: Preidikman, Sergio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina
Fil: Massa, Julio Cesar. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina
Fil: Mook, Dean T.. Virginia Polytechnic Institute; Estados Unidos - Materia
-
FLAPPING WINGS
KINEMATICS
UNSTEADY AERODYNAMICS
BIO-INSPIRATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/241673
Ver los metadatos del registro completo
id |
CONICETDig_509ebfa440046eb386caad918f0b3eb3 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/241673 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Development of a Kinematical Model to Study the Aerodynamics of Flapping-WingsRoccia, Bruno AntonioPreidikman, SergioMassa, Julio CesarMook, Dean T.FLAPPING WINGSKINEMATICSUNSTEADY AERODYNAMICSBIO-INSPIRATIONhttps://purl.org/becyt/ford/2.11https://purl.org/becyt/ford/2The kinematics that characterizes the “natural flight” of insects is quite complex. It involves simultaneous rotations, oscillations and significant changes in the angle of attack. All this permits the wings to follow an extremely complex trajectory producing different flight mechanisms that are efficient at low to moderate Reynolds numbers. Some of these mechanisms, such as the delayed stall, the additional circulation generated by the rotation of the wing, and the wake capture amongst others, offer unique advantages with respect to the well-known fixed-wing aerial vehicles. Such advantages are better lift and thrust generation without the need to increase weight. This paper presents a general kinematical model that permits studying the movements of the wings of a scale robot of a house fly, the ‘RoboFly’, built at UC Berkeley, USA. Additionally, this general kinematical model allows studying the kinematics of the wings of a flying insect considering both the body orientation and the stroke plane orientation of the creature in the 3D space. This work provides a nexus between the descriptive language used by biologists and the predictive language used by engineers. This connection between scientific disciplines allows one to study and characterize the principal kinematic parameters that intervene in a stroke cycle, as well as to determine how these variables modify the trajectories of the material points on the wings.Fil: Roccia, Bruno Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ingeniería; ArgentinaFil: Preidikman, Sergio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; ArgentinaFil: Massa, Julio Cesar. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; ArgentinaFil: Mook, Dean T.. Virginia Polytechnic Institute; Estados UnidosSAGE Publications2011-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/241673Roccia, Bruno Antonio; Preidikman, Sergio; Massa, Julio Cesar; Mook, Dean T.; Development of a Kinematical Model to Study the Aerodynamics of Flapping-Wings; SAGE Publications; International Journal of Micro Air Vehicles; 3; 2; 6-2011; 61-881756-82931756-8307CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://journals.sagepub.com/doi/10.1260/1756-8293.3.2.61info:eu-repo/semantics/altIdentifier/doi/10.1260/1756-8293.3.2.61info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:55:14Zoai:ri.conicet.gov.ar:11336/241673instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:55:14.776CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Development of a Kinematical Model to Study the Aerodynamics of Flapping-Wings |
title |
Development of a Kinematical Model to Study the Aerodynamics of Flapping-Wings |
spellingShingle |
Development of a Kinematical Model to Study the Aerodynamics of Flapping-Wings Roccia, Bruno Antonio FLAPPING WINGS KINEMATICS UNSTEADY AERODYNAMICS BIO-INSPIRATION |
title_short |
Development of a Kinematical Model to Study the Aerodynamics of Flapping-Wings |
title_full |
Development of a Kinematical Model to Study the Aerodynamics of Flapping-Wings |
title_fullStr |
Development of a Kinematical Model to Study the Aerodynamics of Flapping-Wings |
title_full_unstemmed |
Development of a Kinematical Model to Study the Aerodynamics of Flapping-Wings |
title_sort |
Development of a Kinematical Model to Study the Aerodynamics of Flapping-Wings |
dc.creator.none.fl_str_mv |
Roccia, Bruno Antonio Preidikman, Sergio Massa, Julio Cesar Mook, Dean T. |
author |
Roccia, Bruno Antonio |
author_facet |
Roccia, Bruno Antonio Preidikman, Sergio Massa, Julio Cesar Mook, Dean T. |
author_role |
author |
author2 |
Preidikman, Sergio Massa, Julio Cesar Mook, Dean T. |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
FLAPPING WINGS KINEMATICS UNSTEADY AERODYNAMICS BIO-INSPIRATION |
topic |
FLAPPING WINGS KINEMATICS UNSTEADY AERODYNAMICS BIO-INSPIRATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.11 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
The kinematics that characterizes the “natural flight” of insects is quite complex. It involves simultaneous rotations, oscillations and significant changes in the angle of attack. All this permits the wings to follow an extremely complex trajectory producing different flight mechanisms that are efficient at low to moderate Reynolds numbers. Some of these mechanisms, such as the delayed stall, the additional circulation generated by the rotation of the wing, and the wake capture amongst others, offer unique advantages with respect to the well-known fixed-wing aerial vehicles. Such advantages are better lift and thrust generation without the need to increase weight. This paper presents a general kinematical model that permits studying the movements of the wings of a scale robot of a house fly, the ‘RoboFly’, built at UC Berkeley, USA. Additionally, this general kinematical model allows studying the kinematics of the wings of a flying insect considering both the body orientation and the stroke plane orientation of the creature in the 3D space. This work provides a nexus between the descriptive language used by biologists and the predictive language used by engineers. This connection between scientific disciplines allows one to study and characterize the principal kinematic parameters that intervene in a stroke cycle, as well as to determine how these variables modify the trajectories of the material points on the wings. Fil: Roccia, Bruno Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ingeniería; Argentina Fil: Preidikman, Sergio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina Fil: Massa, Julio Cesar. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina Fil: Mook, Dean T.. Virginia Polytechnic Institute; Estados Unidos |
description |
The kinematics that characterizes the “natural flight” of insects is quite complex. It involves simultaneous rotations, oscillations and significant changes in the angle of attack. All this permits the wings to follow an extremely complex trajectory producing different flight mechanisms that are efficient at low to moderate Reynolds numbers. Some of these mechanisms, such as the delayed stall, the additional circulation generated by the rotation of the wing, and the wake capture amongst others, offer unique advantages with respect to the well-known fixed-wing aerial vehicles. Such advantages are better lift and thrust generation without the need to increase weight. This paper presents a general kinematical model that permits studying the movements of the wings of a scale robot of a house fly, the ‘RoboFly’, built at UC Berkeley, USA. Additionally, this general kinematical model allows studying the kinematics of the wings of a flying insect considering both the body orientation and the stroke plane orientation of the creature in the 3D space. This work provides a nexus between the descriptive language used by biologists and the predictive language used by engineers. This connection between scientific disciplines allows one to study and characterize the principal kinematic parameters that intervene in a stroke cycle, as well as to determine how these variables modify the trajectories of the material points on the wings. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/241673 Roccia, Bruno Antonio; Preidikman, Sergio; Massa, Julio Cesar; Mook, Dean T.; Development of a Kinematical Model to Study the Aerodynamics of Flapping-Wings; SAGE Publications; International Journal of Micro Air Vehicles; 3; 2; 6-2011; 61-88 1756-8293 1756-8307 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/241673 |
identifier_str_mv |
Roccia, Bruno Antonio; Preidikman, Sergio; Massa, Julio Cesar; Mook, Dean T.; Development of a Kinematical Model to Study the Aerodynamics of Flapping-Wings; SAGE Publications; International Journal of Micro Air Vehicles; 3; 2; 6-2011; 61-88 1756-8293 1756-8307 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://journals.sagepub.com/doi/10.1260/1756-8293.3.2.61 info:eu-repo/semantics/altIdentifier/doi/10.1260/1756-8293.3.2.61 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
SAGE Publications |
publisher.none.fl_str_mv |
SAGE Publications |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269332598423552 |
score |
13.13397 |