Computational aeroelasticity of flying robots with flexible wings

Autores
Preidikman, Sergio; Roccia, Bruno Antonio; Verstraete, Marcos Leonardo; Valdez, Marcelo Federico; Mook, Dean T.; Balachandran, Balakumar
Año de publicación
2017
Idioma
inglés
Tipo de recurso
parte de libro
Estado
versión publicada
Descripción
A computational co-simulation framework for flying robots with flexible wings is presented. The authors combine a nonlinear aerodynamic model based on an extended version of the unsteady vortex-lattice method with a nonlinear structural model based on a segregated formulation of Lagrange's equations obtained with the Floating Frame of Reference formalism. The structural model construction allows for hybrid combinations of different models typically used with multibody systems such as models based on rigid-body dynamics, assumed-modes techniques, and finite-element methods. The aerodynamic model includes a simulation of leading-edge separation for large angles of attack. The governing differential-algebraic equations are solved simultaneously and interactively to obtain the structural response and the flow in the time domain. The integration is based on the fourth-order predictor-corrector method of Hamming with a procedure to stabilize the iteration. The findings are found to capture known nonlinear behavior of flapping-wing systems. The developed framework should be relevant for conducting aeroelastic studies on a wide variety of air vehicle systems.
Fil: Preidikman, Sergio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Estudios Avanzados en Ingeniería y Tecnología. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Estudios Avanzados en Ingeniería y Tecnología; Argentina
Fil: Roccia, Bruno Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Estudios Avanzados en Ingeniería y Tecnología. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Estudios Avanzados en Ingeniería y Tecnología; Argentina
Fil: Verstraete, Marcos Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Estudios Avanzados en Ingeniería y Tecnología. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Estudios Avanzados en Ingeniería y Tecnología; Argentina
Fil: Valdez, Marcelo Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones en Energía no Convencional. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Física. Instituto de Investigaciones en Energía no Convencional; Argentina
Fil: Mook, Dean T.. Virginia Polytechnic Institute; Estados Unidos
Fil: Balachandran, Balakumar. University of Maryland; Estados Unidos
Materia
FLEXIBLE WINGS
FLAPPING WINGS
MORPHING WINGS
MICRO-AIR-VEHICLES
AEROELASTICITY
CO-SIMULATION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/204093

id CONICETDig_9d4a82b42c4afcd88ace29b55da08e0e
oai_identifier_str oai:ri.conicet.gov.ar:11336/204093
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Computational aeroelasticity of flying robots with flexible wingsPreidikman, SergioRoccia, Bruno AntonioVerstraete, Marcos LeonardoValdez, Marcelo FedericoMook, Dean T.Balachandran, BalakumarFLEXIBLE WINGSFLAPPING WINGSMORPHING WINGSMICRO-AIR-VEHICLESAEROELASTICITYCO-SIMULATIONhttps://purl.org/becyt/ford/2.3https://purl.org/becyt/ford/2A computational co-simulation framework for flying robots with flexible wings is presented. The authors combine a nonlinear aerodynamic model based on an extended version of the unsteady vortex-lattice method with a nonlinear structural model based on a segregated formulation of Lagrange's equations obtained with the Floating Frame of Reference formalism. The structural model construction allows for hybrid combinations of different models typically used with multibody systems such as models based on rigid-body dynamics, assumed-modes techniques, and finite-element methods. The aerodynamic model includes a simulation of leading-edge separation for large angles of attack. The governing differential-algebraic equations are solved simultaneously and interactively to obtain the structural response and the flow in the time domain. The integration is based on the fourth-order predictor-corrector method of Hamming with a procedure to stabilize the iteration. The findings are found to capture known nonlinear behavior of flapping-wing systems. The developed framework should be relevant for conducting aeroelastic studies on a wide variety of air vehicle systems.Fil: Preidikman, Sergio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Estudios Avanzados en Ingeniería y Tecnología. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Estudios Avanzados en Ingeniería y Tecnología; ArgentinaFil: Roccia, Bruno Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Estudios Avanzados en Ingeniería y Tecnología. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Estudios Avanzados en Ingeniería y Tecnología; ArgentinaFil: Verstraete, Marcos Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Estudios Avanzados en Ingeniería y Tecnología. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Estudios Avanzados en Ingeniería y Tecnología; ArgentinaFil: Valdez, Marcelo Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones en Energía no Convencional. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Física. Instituto de Investigaciones en Energía no Convencional; ArgentinaFil: Mook, Dean T.. Virginia Polytechnic Institute; Estados UnidosFil: Balachandran, Balakumar. University of Maryland; Estados UnidosIntechOpen2017info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bookParthttp://purl.org/coar/resource_type/c_3248info:ar-repo/semantics/parteDeLibroapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/204093Preidikman, Sergio; Roccia, Bruno Antonio; Verstraete, Marcos Leonardo; Valdez, Marcelo Federico; Mook, Dean T.; et al.; Computational aeroelasticity of flying robots with flexible wings; IntechOpen; 2017; 3-30978-953-51-3464-0CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.intechopen.com/books/aerial-robots-aerodynamics-control-and-applicationsinfo:eu-repo/semantics/altIdentifier/url/http://dx.doi.org/10.5772/intechopen.69396info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:53:39Zoai:ri.conicet.gov.ar:11336/204093instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:53:40.191CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Computational aeroelasticity of flying robots with flexible wings
title Computational aeroelasticity of flying robots with flexible wings
spellingShingle Computational aeroelasticity of flying robots with flexible wings
Preidikman, Sergio
FLEXIBLE WINGS
FLAPPING WINGS
MORPHING WINGS
MICRO-AIR-VEHICLES
AEROELASTICITY
CO-SIMULATION
title_short Computational aeroelasticity of flying robots with flexible wings
title_full Computational aeroelasticity of flying robots with flexible wings
title_fullStr Computational aeroelasticity of flying robots with flexible wings
title_full_unstemmed Computational aeroelasticity of flying robots with flexible wings
title_sort Computational aeroelasticity of flying robots with flexible wings
dc.creator.none.fl_str_mv Preidikman, Sergio
Roccia, Bruno Antonio
Verstraete, Marcos Leonardo
Valdez, Marcelo Federico
Mook, Dean T.
Balachandran, Balakumar
author Preidikman, Sergio
author_facet Preidikman, Sergio
Roccia, Bruno Antonio
Verstraete, Marcos Leonardo
Valdez, Marcelo Federico
Mook, Dean T.
Balachandran, Balakumar
author_role author
author2 Roccia, Bruno Antonio
Verstraete, Marcos Leonardo
Valdez, Marcelo Federico
Mook, Dean T.
Balachandran, Balakumar
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv FLEXIBLE WINGS
FLAPPING WINGS
MORPHING WINGS
MICRO-AIR-VEHICLES
AEROELASTICITY
CO-SIMULATION
topic FLEXIBLE WINGS
FLAPPING WINGS
MORPHING WINGS
MICRO-AIR-VEHICLES
AEROELASTICITY
CO-SIMULATION
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.3
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv A computational co-simulation framework for flying robots with flexible wings is presented. The authors combine a nonlinear aerodynamic model based on an extended version of the unsteady vortex-lattice method with a nonlinear structural model based on a segregated formulation of Lagrange's equations obtained with the Floating Frame of Reference formalism. The structural model construction allows for hybrid combinations of different models typically used with multibody systems such as models based on rigid-body dynamics, assumed-modes techniques, and finite-element methods. The aerodynamic model includes a simulation of leading-edge separation for large angles of attack. The governing differential-algebraic equations are solved simultaneously and interactively to obtain the structural response and the flow in the time domain. The integration is based on the fourth-order predictor-corrector method of Hamming with a procedure to stabilize the iteration. The findings are found to capture known nonlinear behavior of flapping-wing systems. The developed framework should be relevant for conducting aeroelastic studies on a wide variety of air vehicle systems.
Fil: Preidikman, Sergio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Estudios Avanzados en Ingeniería y Tecnología. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Estudios Avanzados en Ingeniería y Tecnología; Argentina
Fil: Roccia, Bruno Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Estudios Avanzados en Ingeniería y Tecnología. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Estudios Avanzados en Ingeniería y Tecnología; Argentina
Fil: Verstraete, Marcos Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Estudios Avanzados en Ingeniería y Tecnología. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Estudios Avanzados en Ingeniería y Tecnología; Argentina
Fil: Valdez, Marcelo Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones en Energía no Convencional. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Física. Instituto de Investigaciones en Energía no Convencional; Argentina
Fil: Mook, Dean T.. Virginia Polytechnic Institute; Estados Unidos
Fil: Balachandran, Balakumar. University of Maryland; Estados Unidos
description A computational co-simulation framework for flying robots with flexible wings is presented. The authors combine a nonlinear aerodynamic model based on an extended version of the unsteady vortex-lattice method with a nonlinear structural model based on a segregated formulation of Lagrange's equations obtained with the Floating Frame of Reference formalism. The structural model construction allows for hybrid combinations of different models typically used with multibody systems such as models based on rigid-body dynamics, assumed-modes techniques, and finite-element methods. The aerodynamic model includes a simulation of leading-edge separation for large angles of attack. The governing differential-algebraic equations are solved simultaneously and interactively to obtain the structural response and the flow in the time domain. The integration is based on the fourth-order predictor-corrector method of Hamming with a procedure to stabilize the iteration. The findings are found to capture known nonlinear behavior of flapping-wing systems. The developed framework should be relevant for conducting aeroelastic studies on a wide variety of air vehicle systems.
publishDate 2017
dc.date.none.fl_str_mv 2017
dc.type.none.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/bookPart
http://purl.org/coar/resource_type/c_3248
info:ar-repo/semantics/parteDeLibro
status_str publishedVersion
format bookPart
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/204093
Preidikman, Sergio; Roccia, Bruno Antonio; Verstraete, Marcos Leonardo; Valdez, Marcelo Federico; Mook, Dean T.; et al.; Computational aeroelasticity of flying robots with flexible wings; IntechOpen; 2017; 3-30
978-953-51-3464-0
CONICET Digital
CONICET
url http://hdl.handle.net/11336/204093
identifier_str_mv Preidikman, Sergio; Roccia, Bruno Antonio; Verstraete, Marcos Leonardo; Valdez, Marcelo Federico; Mook, Dean T.; et al.; Computational aeroelasticity of flying robots with flexible wings; IntechOpen; 2017; 3-30
978-953-51-3464-0
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.intechopen.com/books/aerial-robots-aerodynamics-control-and-applications
info:eu-repo/semantics/altIdentifier/url/http://dx.doi.org/10.5772/intechopen.69396
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv IntechOpen
publisher.none.fl_str_mv IntechOpen
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269239824613376
score 13.13397