Modified unsteady vortex-lattice method to study flapping wings in hover flight
- Autores
- Roccia, Bruno Antonio; Preidikman, Sergio; Massa, Julio Cesar; Mook, Dean T.
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A numerical-simulation tool is developed that is well suited for modeling the unsteady nonlinear aerodynamics of flying insects and small birds as well as biologically inspired flapping-wing micro air vehicles. The present numerical model is an extension of the widely used three-dimensional general unsteady vortex-lattice model and provides an attractive compromise between computational cost and fidelity. Moreover, it is ideally suited to be combined with computational structural dynamics to provide aeroelastic analyses. The present numerical results for a twisting, flapping wing with neither leading-edge nor wing-tip separations are in close agreement with the results obtained in previous studies with the Euler equations and a vortex-lattice method. The present results for unsteady lift, mean lift, and frequency content of the force are in good agreement with experimental data for the robofly apparatus. The actual wing motion of a hovering Drosophila is used to compute the flowfield and predict the lift force. The downward motion of the fluid particles revealed in the graphics of the calculated wake indicates the presence of lift. Moreover, the calculated mean lift is in close agreement with the weight of a Drosophila. The results presented in this paper definitely show that the interaction between vortices is the main feature that allows insects to generate enough lift to stay aloft. The present results warrant the use of this general version of the unsteady vortex-lattice method for future studies.
Fil: Roccia, Bruno Antonio. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Preidikman, Sergio. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Massa, Julio Cesar. Universidad Nacional de Córdoba; Argentina
Fil: Mook, Dean T.. Virginia Polytechnic Institute; Estados Unidos - Materia
-
Flapping Wings
Unsteady Aerodynamics
Nonlinear Aerodynamics
Vortex-Lattice Method - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/24607
Ver los metadatos del registro completo
| id |
CONICETDig_2faf22337c1f083ec2071880d6ca13d4 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/24607 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Modified unsteady vortex-lattice method to study flapping wings in hover flightRoccia, Bruno AntonioPreidikman, SergioMassa, Julio CesarMook, Dean T.Flapping WingsUnsteady AerodynamicsNonlinear AerodynamicsVortex-Lattice Methodhttps://purl.org/becyt/ford/2.3https://purl.org/becyt/ford/2A numerical-simulation tool is developed that is well suited for modeling the unsteady nonlinear aerodynamics of flying insects and small birds as well as biologically inspired flapping-wing micro air vehicles. The present numerical model is an extension of the widely used three-dimensional general unsteady vortex-lattice model and provides an attractive compromise between computational cost and fidelity. Moreover, it is ideally suited to be combined with computational structural dynamics to provide aeroelastic analyses. The present numerical results for a twisting, flapping wing with neither leading-edge nor wing-tip separations are in close agreement with the results obtained in previous studies with the Euler equations and a vortex-lattice method. The present results for unsteady lift, mean lift, and frequency content of the force are in good agreement with experimental data for the robofly apparatus. The actual wing motion of a hovering Drosophila is used to compute the flowfield and predict the lift force. The downward motion of the fluid particles revealed in the graphics of the calculated wake indicates the presence of lift. Moreover, the calculated mean lift is in close agreement with the weight of a Drosophila. The results presented in this paper definitely show that the interaction between vortices is the main feature that allows insects to generate enough lift to stay aloft. The present results warrant the use of this general version of the unsteady vortex-lattice method for future studies.Fil: Roccia, Bruno Antonio. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Preidikman, Sergio. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Massa, Julio Cesar. Universidad Nacional de Córdoba; ArgentinaFil: Mook, Dean T.. Virginia Polytechnic Institute; Estados UnidosAmer Inst Aeronaut Astronaut2013-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/24607Roccia, Bruno Antonio; Preidikman, Sergio; Massa, Julio Cesar; Mook, Dean T.; Modified unsteady vortex-lattice method to study flapping wings in hover flight; Amer Inst Aeronaut Astronaut; Aiaa - American Institute Of Aeronautics And Astronautics; 51; 11; 9-2013; 2628-26420001-14521533-385XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.2514/1.J052262info:eu-repo/semantics/altIdentifier/url/https://arc.aiaa.org/doi/10.2514/1.J052262info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:48:36Zoai:ri.conicet.gov.ar:11336/24607instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:48:36.879CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Modified unsteady vortex-lattice method to study flapping wings in hover flight |
| title |
Modified unsteady vortex-lattice method to study flapping wings in hover flight |
| spellingShingle |
Modified unsteady vortex-lattice method to study flapping wings in hover flight Roccia, Bruno Antonio Flapping Wings Unsteady Aerodynamics Nonlinear Aerodynamics Vortex-Lattice Method |
| title_short |
Modified unsteady vortex-lattice method to study flapping wings in hover flight |
| title_full |
Modified unsteady vortex-lattice method to study flapping wings in hover flight |
| title_fullStr |
Modified unsteady vortex-lattice method to study flapping wings in hover flight |
| title_full_unstemmed |
Modified unsteady vortex-lattice method to study flapping wings in hover flight |
| title_sort |
Modified unsteady vortex-lattice method to study flapping wings in hover flight |
| dc.creator.none.fl_str_mv |
Roccia, Bruno Antonio Preidikman, Sergio Massa, Julio Cesar Mook, Dean T. |
| author |
Roccia, Bruno Antonio |
| author_facet |
Roccia, Bruno Antonio Preidikman, Sergio Massa, Julio Cesar Mook, Dean T. |
| author_role |
author |
| author2 |
Preidikman, Sergio Massa, Julio Cesar Mook, Dean T. |
| author2_role |
author author author |
| dc.subject.none.fl_str_mv |
Flapping Wings Unsteady Aerodynamics Nonlinear Aerodynamics Vortex-Lattice Method |
| topic |
Flapping Wings Unsteady Aerodynamics Nonlinear Aerodynamics Vortex-Lattice Method |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.3 https://purl.org/becyt/ford/2 |
| dc.description.none.fl_txt_mv |
A numerical-simulation tool is developed that is well suited for modeling the unsteady nonlinear aerodynamics of flying insects and small birds as well as biologically inspired flapping-wing micro air vehicles. The present numerical model is an extension of the widely used three-dimensional general unsteady vortex-lattice model and provides an attractive compromise between computational cost and fidelity. Moreover, it is ideally suited to be combined with computational structural dynamics to provide aeroelastic analyses. The present numerical results for a twisting, flapping wing with neither leading-edge nor wing-tip separations are in close agreement with the results obtained in previous studies with the Euler equations and a vortex-lattice method. The present results for unsteady lift, mean lift, and frequency content of the force are in good agreement with experimental data for the robofly apparatus. The actual wing motion of a hovering Drosophila is used to compute the flowfield and predict the lift force. The downward motion of the fluid particles revealed in the graphics of the calculated wake indicates the presence of lift. Moreover, the calculated mean lift is in close agreement with the weight of a Drosophila. The results presented in this paper definitely show that the interaction between vortices is the main feature that allows insects to generate enough lift to stay aloft. The present results warrant the use of this general version of the unsteady vortex-lattice method for future studies. Fil: Roccia, Bruno Antonio. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Preidikman, Sergio. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Massa, Julio Cesar. Universidad Nacional de Córdoba; Argentina Fil: Mook, Dean T.. Virginia Polytechnic Institute; Estados Unidos |
| description |
A numerical-simulation tool is developed that is well suited for modeling the unsteady nonlinear aerodynamics of flying insects and small birds as well as biologically inspired flapping-wing micro air vehicles. The present numerical model is an extension of the widely used three-dimensional general unsteady vortex-lattice model and provides an attractive compromise between computational cost and fidelity. Moreover, it is ideally suited to be combined with computational structural dynamics to provide aeroelastic analyses. The present numerical results for a twisting, flapping wing with neither leading-edge nor wing-tip separations are in close agreement with the results obtained in previous studies with the Euler equations and a vortex-lattice method. The present results for unsteady lift, mean lift, and frequency content of the force are in good agreement with experimental data for the robofly apparatus. The actual wing motion of a hovering Drosophila is used to compute the flowfield and predict the lift force. The downward motion of the fluid particles revealed in the graphics of the calculated wake indicates the presence of lift. Moreover, the calculated mean lift is in close agreement with the weight of a Drosophila. The results presented in this paper definitely show that the interaction between vortices is the main feature that allows insects to generate enough lift to stay aloft. The present results warrant the use of this general version of the unsteady vortex-lattice method for future studies. |
| publishDate |
2013 |
| dc.date.none.fl_str_mv |
2013-09 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/24607 Roccia, Bruno Antonio; Preidikman, Sergio; Massa, Julio Cesar; Mook, Dean T.; Modified unsteady vortex-lattice method to study flapping wings in hover flight; Amer Inst Aeronaut Astronaut; Aiaa - American Institute Of Aeronautics And Astronautics; 51; 11; 9-2013; 2628-2642 0001-1452 1533-385X CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/24607 |
| identifier_str_mv |
Roccia, Bruno Antonio; Preidikman, Sergio; Massa, Julio Cesar; Mook, Dean T.; Modified unsteady vortex-lattice method to study flapping wings in hover flight; Amer Inst Aeronaut Astronaut; Aiaa - American Institute Of Aeronautics And Astronautics; 51; 11; 9-2013; 2628-2642 0001-1452 1533-385X CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.2514/1.J052262 info:eu-repo/semantics/altIdentifier/url/https://arc.aiaa.org/doi/10.2514/1.J052262 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Amer Inst Aeronaut Astronaut |
| publisher.none.fl_str_mv |
Amer Inst Aeronaut Astronaut |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846083006741086208 |
| score |
13.22299 |