Modified unsteady vortex-lattice method to study flapping wings in hover flight

Autores
Roccia, Bruno Antonio; Preidikman, Sergio; Massa, Julio Cesar; Mook, Dean T.
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A numerical-simulation tool is developed that is well suited for modeling the unsteady nonlinear aerodynamics of flying insects and small birds as well as biologically inspired flapping-wing micro air vehicles. The present numerical model is an extension of the widely used three-dimensional general unsteady vortex-lattice model and provides an attractive compromise between computational cost and fidelity. Moreover, it is ideally suited to be combined with computational structural dynamics to provide aeroelastic analyses. The present numerical results for a twisting, flapping wing with neither leading-edge nor wing-tip separations are in close agreement with the results obtained in previous studies with the Euler equations and a vortex-lattice method. The present results for unsteady lift, mean lift, and frequency content of the force are in good agreement with experimental data for the robofly apparatus. The actual wing motion of a hovering Drosophila is used to compute the flowfield and predict the lift force. The downward motion of the fluid particles revealed in the graphics of the calculated wake indicates the presence of lift. Moreover, the calculated mean lift is in close agreement with the weight of a Drosophila. The results presented in this paper definitely show that the interaction between vortices is the main feature that allows insects to generate enough lift to stay aloft. The present results warrant the use of this general version of the unsteady vortex-lattice method for future studies.
Fil: Roccia, Bruno Antonio. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Preidikman, Sergio. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Massa, Julio Cesar. Universidad Nacional de Córdoba; Argentina
Fil: Mook, Dean T.. Virginia Polytechnic Institute; Estados Unidos
Materia
Flapping Wings
Unsteady Aerodynamics
Nonlinear Aerodynamics
Vortex-Lattice Method
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/24607

id CONICETDig_2faf22337c1f083ec2071880d6ca13d4
oai_identifier_str oai:ri.conicet.gov.ar:11336/24607
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Modified unsteady vortex-lattice method to study flapping wings in hover flightRoccia, Bruno AntonioPreidikman, SergioMassa, Julio CesarMook, Dean T.Flapping WingsUnsteady AerodynamicsNonlinear AerodynamicsVortex-Lattice Methodhttps://purl.org/becyt/ford/2.3https://purl.org/becyt/ford/2A numerical-simulation tool is developed that is well suited for modeling the unsteady nonlinear aerodynamics of flying insects and small birds as well as biologically inspired flapping-wing micro air vehicles. The present numerical model is an extension of the widely used three-dimensional general unsteady vortex-lattice model and provides an attractive compromise between computational cost and fidelity. Moreover, it is ideally suited to be combined with computational structural dynamics to provide aeroelastic analyses. The present numerical results for a twisting, flapping wing with neither leading-edge nor wing-tip separations are in close agreement with the results obtained in previous studies with the Euler equations and a vortex-lattice method. The present results for unsteady lift, mean lift, and frequency content of the force are in good agreement with experimental data for the robofly apparatus. The actual wing motion of a hovering Drosophila is used to compute the flowfield and predict the lift force. The downward motion of the fluid particles revealed in the graphics of the calculated wake indicates the presence of lift. Moreover, the calculated mean lift is in close agreement with the weight of a Drosophila. The results presented in this paper definitely show that the interaction between vortices is the main feature that allows insects to generate enough lift to stay aloft. The present results warrant the use of this general version of the unsteady vortex-lattice method for future studies.Fil: Roccia, Bruno Antonio. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Preidikman, Sergio. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Massa, Julio Cesar. Universidad Nacional de Córdoba; ArgentinaFil: Mook, Dean T.. Virginia Polytechnic Institute; Estados UnidosAmer Inst Aeronaut Astronaut2013-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/24607Roccia, Bruno Antonio; Preidikman, Sergio; Massa, Julio Cesar; Mook, Dean T.; Modified unsteady vortex-lattice method to study flapping wings in hover flight; Amer Inst Aeronaut Astronaut; Aiaa - American Institute Of Aeronautics And Astronautics; 51; 11; 9-2013; 2628-26420001-14521533-385XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.2514/1.J052262info:eu-repo/semantics/altIdentifier/url/https://arc.aiaa.org/doi/10.2514/1.J052262info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:48:36Zoai:ri.conicet.gov.ar:11336/24607instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:48:36.879CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Modified unsteady vortex-lattice method to study flapping wings in hover flight
title Modified unsteady vortex-lattice method to study flapping wings in hover flight
spellingShingle Modified unsteady vortex-lattice method to study flapping wings in hover flight
Roccia, Bruno Antonio
Flapping Wings
Unsteady Aerodynamics
Nonlinear Aerodynamics
Vortex-Lattice Method
title_short Modified unsteady vortex-lattice method to study flapping wings in hover flight
title_full Modified unsteady vortex-lattice method to study flapping wings in hover flight
title_fullStr Modified unsteady vortex-lattice method to study flapping wings in hover flight
title_full_unstemmed Modified unsteady vortex-lattice method to study flapping wings in hover flight
title_sort Modified unsteady vortex-lattice method to study flapping wings in hover flight
dc.creator.none.fl_str_mv Roccia, Bruno Antonio
Preidikman, Sergio
Massa, Julio Cesar
Mook, Dean T.
author Roccia, Bruno Antonio
author_facet Roccia, Bruno Antonio
Preidikman, Sergio
Massa, Julio Cesar
Mook, Dean T.
author_role author
author2 Preidikman, Sergio
Massa, Julio Cesar
Mook, Dean T.
author2_role author
author
author
dc.subject.none.fl_str_mv Flapping Wings
Unsteady Aerodynamics
Nonlinear Aerodynamics
Vortex-Lattice Method
topic Flapping Wings
Unsteady Aerodynamics
Nonlinear Aerodynamics
Vortex-Lattice Method
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.3
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv A numerical-simulation tool is developed that is well suited for modeling the unsteady nonlinear aerodynamics of flying insects and small birds as well as biologically inspired flapping-wing micro air vehicles. The present numerical model is an extension of the widely used three-dimensional general unsteady vortex-lattice model and provides an attractive compromise between computational cost and fidelity. Moreover, it is ideally suited to be combined with computational structural dynamics to provide aeroelastic analyses. The present numerical results for a twisting, flapping wing with neither leading-edge nor wing-tip separations are in close agreement with the results obtained in previous studies with the Euler equations and a vortex-lattice method. The present results for unsteady lift, mean lift, and frequency content of the force are in good agreement with experimental data for the robofly apparatus. The actual wing motion of a hovering Drosophila is used to compute the flowfield and predict the lift force. The downward motion of the fluid particles revealed in the graphics of the calculated wake indicates the presence of lift. Moreover, the calculated mean lift is in close agreement with the weight of a Drosophila. The results presented in this paper definitely show that the interaction between vortices is the main feature that allows insects to generate enough lift to stay aloft. The present results warrant the use of this general version of the unsteady vortex-lattice method for future studies.
Fil: Roccia, Bruno Antonio. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Preidikman, Sergio. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Massa, Julio Cesar. Universidad Nacional de Córdoba; Argentina
Fil: Mook, Dean T.. Virginia Polytechnic Institute; Estados Unidos
description A numerical-simulation tool is developed that is well suited for modeling the unsteady nonlinear aerodynamics of flying insects and small birds as well as biologically inspired flapping-wing micro air vehicles. The present numerical model is an extension of the widely used three-dimensional general unsteady vortex-lattice model and provides an attractive compromise between computational cost and fidelity. Moreover, it is ideally suited to be combined with computational structural dynamics to provide aeroelastic analyses. The present numerical results for a twisting, flapping wing with neither leading-edge nor wing-tip separations are in close agreement with the results obtained in previous studies with the Euler equations and a vortex-lattice method. The present results for unsteady lift, mean lift, and frequency content of the force are in good agreement with experimental data for the robofly apparatus. The actual wing motion of a hovering Drosophila is used to compute the flowfield and predict the lift force. The downward motion of the fluid particles revealed in the graphics of the calculated wake indicates the presence of lift. Moreover, the calculated mean lift is in close agreement with the weight of a Drosophila. The results presented in this paper definitely show that the interaction between vortices is the main feature that allows insects to generate enough lift to stay aloft. The present results warrant the use of this general version of the unsteady vortex-lattice method for future studies.
publishDate 2013
dc.date.none.fl_str_mv 2013-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/24607
Roccia, Bruno Antonio; Preidikman, Sergio; Massa, Julio Cesar; Mook, Dean T.; Modified unsteady vortex-lattice method to study flapping wings in hover flight; Amer Inst Aeronaut Astronaut; Aiaa - American Institute Of Aeronautics And Astronautics; 51; 11; 9-2013; 2628-2642
0001-1452
1533-385X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/24607
identifier_str_mv Roccia, Bruno Antonio; Preidikman, Sergio; Massa, Julio Cesar; Mook, Dean T.; Modified unsteady vortex-lattice method to study flapping wings in hover flight; Amer Inst Aeronaut Astronaut; Aiaa - American Institute Of Aeronautics And Astronautics; 51; 11; 9-2013; 2628-2642
0001-1452
1533-385X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.2514/1.J052262
info:eu-repo/semantics/altIdentifier/url/https://arc.aiaa.org/doi/10.2514/1.J052262
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Amer Inst Aeronaut Astronaut
publisher.none.fl_str_mv Amer Inst Aeronaut Astronaut
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083006741086208
score 13.22299