Predictions of the Maximum Amplitude, Time of Occurrence, and Total Length of Solar Cycle 24
- Autores
- Uzal, Lucas César; Piacentini, Ruben Dario Narciso; Verdes, Pablo Fabian
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this work we predict the maximum amplitude, its time of occurrence, and the total length of Solar Cycle 24 by linear regression to the curvature (second derivative) at the preceding minimum of a smoothed version of the sunspots time series. We characterise the predictive power of the proposed methodology in a causal manner by an incremental incorporation of past solar cycles to the available data base. In regressing maximum cycle intensity to curvature at the leading minimum, we obtain a correlation coefficient R≈0.91 and for the upcoming Cycle 24 a forecast of 78 (90 % confidence interval: 56 ? 106). The ascent time also appears to be highly correlated to the second derivative at the starting minimum (R≈−0.77), predicting maximum solar activity for October 2013 (90 % confidence interval: January 2013 to September 2014). Solar Cycle 24 should come to an end by February 2020 (90 % confidence interval: January 2019 to July 2021), although in this case correlational evidence is weaker (R≈−0.56).
Fil: Uzal, Lucas César. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
Fil: Piacentini, Ruben Dario Narciso. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentina
Fil: Verdes, Pablo Fabian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina - Materia
-
ASCENT TIME
MAXIMUM ACTIVITY PREDICTION
SOLAR CYCLE 24
TOTAL CYCLE LENGTH - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/162820
Ver los metadatos del registro completo
| id |
CONICETDig_4f49d64488b1bf4419a2cee0b594ee44 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/162820 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Predictions of the Maximum Amplitude, Time of Occurrence, and Total Length of Solar Cycle 24Uzal, Lucas CésarPiacentini, Ruben Dario NarcisoVerdes, Pablo FabianASCENT TIMEMAXIMUM ACTIVITY PREDICTIONSOLAR CYCLE 24TOTAL CYCLE LENGTHhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1In this work we predict the maximum amplitude, its time of occurrence, and the total length of Solar Cycle 24 by linear regression to the curvature (second derivative) at the preceding minimum of a smoothed version of the sunspots time series. We characterise the predictive power of the proposed methodology in a causal manner by an incremental incorporation of past solar cycles to the available data base. In regressing maximum cycle intensity to curvature at the leading minimum, we obtain a correlation coefficient R≈0.91 and for the upcoming Cycle 24 a forecast of 78 (90 % confidence interval: 56 ? 106). The ascent time also appears to be highly correlated to the second derivative at the starting minimum (R≈−0.77), predicting maximum solar activity for October 2013 (90 % confidence interval: January 2013 to September 2014). Solar Cycle 24 should come to an end by February 2020 (90 % confidence interval: January 2019 to July 2021), although in this case correlational evidence is weaker (R≈−0.56).Fil: Uzal, Lucas César. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; ArgentinaFil: Piacentini, Ruben Dario Narciso. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; ArgentinaFil: Verdes, Pablo Fabian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; ArgentinaSpringer2012-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/162820Uzal, Lucas César; Piacentini, Ruben Dario Narciso; Verdes, Pablo Fabian; Predictions of the Maximum Amplitude, Time of Occurrence, and Total Length of Solar Cycle 24; Springer; Solar Physics; 279; 2; 6-2012; 551-5600038-0938CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s11207-012-0030-9info:eu-repo/semantics/altIdentifier/doi/10.1007/s11207-012-0030-9info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:22:17Zoai:ri.conicet.gov.ar:11336/162820instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:22:17.763CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Predictions of the Maximum Amplitude, Time of Occurrence, and Total Length of Solar Cycle 24 |
| title |
Predictions of the Maximum Amplitude, Time of Occurrence, and Total Length of Solar Cycle 24 |
| spellingShingle |
Predictions of the Maximum Amplitude, Time of Occurrence, and Total Length of Solar Cycle 24 Uzal, Lucas César ASCENT TIME MAXIMUM ACTIVITY PREDICTION SOLAR CYCLE 24 TOTAL CYCLE LENGTH |
| title_short |
Predictions of the Maximum Amplitude, Time of Occurrence, and Total Length of Solar Cycle 24 |
| title_full |
Predictions of the Maximum Amplitude, Time of Occurrence, and Total Length of Solar Cycle 24 |
| title_fullStr |
Predictions of the Maximum Amplitude, Time of Occurrence, and Total Length of Solar Cycle 24 |
| title_full_unstemmed |
Predictions of the Maximum Amplitude, Time of Occurrence, and Total Length of Solar Cycle 24 |
| title_sort |
Predictions of the Maximum Amplitude, Time of Occurrence, and Total Length of Solar Cycle 24 |
| dc.creator.none.fl_str_mv |
Uzal, Lucas César Piacentini, Ruben Dario Narciso Verdes, Pablo Fabian |
| author |
Uzal, Lucas César |
| author_facet |
Uzal, Lucas César Piacentini, Ruben Dario Narciso Verdes, Pablo Fabian |
| author_role |
author |
| author2 |
Piacentini, Ruben Dario Narciso Verdes, Pablo Fabian |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
ASCENT TIME MAXIMUM ACTIVITY PREDICTION SOLAR CYCLE 24 TOTAL CYCLE LENGTH |
| topic |
ASCENT TIME MAXIMUM ACTIVITY PREDICTION SOLAR CYCLE 24 TOTAL CYCLE LENGTH |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
In this work we predict the maximum amplitude, its time of occurrence, and the total length of Solar Cycle 24 by linear regression to the curvature (second derivative) at the preceding minimum of a smoothed version of the sunspots time series. We characterise the predictive power of the proposed methodology in a causal manner by an incremental incorporation of past solar cycles to the available data base. In regressing maximum cycle intensity to curvature at the leading minimum, we obtain a correlation coefficient R≈0.91 and for the upcoming Cycle 24 a forecast of 78 (90 % confidence interval: 56 ? 106). The ascent time also appears to be highly correlated to the second derivative at the starting minimum (R≈−0.77), predicting maximum solar activity for October 2013 (90 % confidence interval: January 2013 to September 2014). Solar Cycle 24 should come to an end by February 2020 (90 % confidence interval: January 2019 to July 2021), although in this case correlational evidence is weaker (R≈−0.56). Fil: Uzal, Lucas César. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina Fil: Piacentini, Ruben Dario Narciso. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentina Fil: Verdes, Pablo Fabian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina |
| description |
In this work we predict the maximum amplitude, its time of occurrence, and the total length of Solar Cycle 24 by linear regression to the curvature (second derivative) at the preceding minimum of a smoothed version of the sunspots time series. We characterise the predictive power of the proposed methodology in a causal manner by an incremental incorporation of past solar cycles to the available data base. In regressing maximum cycle intensity to curvature at the leading minimum, we obtain a correlation coefficient R≈0.91 and for the upcoming Cycle 24 a forecast of 78 (90 % confidence interval: 56 ? 106). The ascent time also appears to be highly correlated to the second derivative at the starting minimum (R≈−0.77), predicting maximum solar activity for October 2013 (90 % confidence interval: January 2013 to September 2014). Solar Cycle 24 should come to an end by February 2020 (90 % confidence interval: January 2019 to July 2021), although in this case correlational evidence is weaker (R≈−0.56). |
| publishDate |
2012 |
| dc.date.none.fl_str_mv |
2012-06 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/162820 Uzal, Lucas César; Piacentini, Ruben Dario Narciso; Verdes, Pablo Fabian; Predictions of the Maximum Amplitude, Time of Occurrence, and Total Length of Solar Cycle 24; Springer; Solar Physics; 279; 2; 6-2012; 551-560 0038-0938 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/162820 |
| identifier_str_mv |
Uzal, Lucas César; Piacentini, Ruben Dario Narciso; Verdes, Pablo Fabian; Predictions of the Maximum Amplitude, Time of Occurrence, and Total Length of Solar Cycle 24; Springer; Solar Physics; 279; 2; 6-2012; 551-560 0038-0938 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s11207-012-0030-9 info:eu-repo/semantics/altIdentifier/doi/10.1007/s11207-012-0030-9 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Springer |
| publisher.none.fl_str_mv |
Springer |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846781739376050176 |
| score |
12.982451 |