Amino Acid Substitutions at Position 190 of Human Immunodeficiency Virus Type 1 Reverse Transcriptase Increase Susceptibility to Delavirdine and Impair Virus Replication

Autores
Huang, W.; Gamarnik, Andrea Vanesa; Limoli, K.; Petropoulos, C. J.; Whitcomb, J. M.
Año de publicación
2003
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Suboptimal treatment of human immunodeficiency virus type 1 (HIV-1) infection with nonnucleoside reverse transcriptase inhibitors (NNRTI) often results in the rapid selection of drug-resistant virus. Several amino acid substitutions at position 190 of reverse transcriptase (RT) have been associated with reduced susceptibility to the NNRTI, especially nevirapine (NVP) and efavirenz (EFV). In the present study, the effects of various 190 substitutions observed in viruses obtained from NNRTI-experienced patients were characterized with patient-derived HIV isolates and confirmed with a panel of isogenic viruses. Compared to wild-type HIV, which has a glycine at position 190 (G190), viruses with 190 substitutions (A, C, Q, S, V, E, or T, collectively referred to as G190X substitutions) were markedly less susceptible to NVP and EFV. In contrast, delavirdine (DLV) susceptibility of these G190X viruses increased from 3 to 300-fold (hypersusceptible) or was only slightly decreased. The replication capacity of viruses with certain 190 substitutions (C, Q, V, T, and E) was severely impaired and was correlated with reduced virion-associated RT activity and incomplete protease (PR) processing of the viral p55(gag) polyprotein. These defects were the result of inadequate p160(gagpol) incorporation into virions. Compensatory mutations within RT and PR improved replication capacity, p55(gag) processing, and RT activity, presumably through increased incorporation of p160(gagpol) into virions. We observe an inverse relationship between the degree of NVP and EFV resistance and the impairment of viral replication in viruses with substitutions at 190 in RT. These observations may have important implications for the future design and development of antiretroviral drugs that restrict the outgrowth of resistant variants with high replication capacity.
Fil: Huang, W.. ViroLogic; Estados Unidos
Fil: Gamarnik, Andrea Vanesa. ViroLogic; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina
Fil: Limoli, K.. ViroLogic; Estados Unidos
Fil: Petropoulos, C. J.. ViroLogic; Estados Unidos
Fil: Whitcomb, J. M.. ViroLogic; Estados Unidos
Materia
HUMAN IMMUNODEFICIENCY
VIRUS REPLICATION
HIV
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/45215

id CONICETDig_4e0c76c4b6a8ce51ed3d79db16375f68
oai_identifier_str oai:ri.conicet.gov.ar:11336/45215
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Amino Acid Substitutions at Position 190 of Human Immunodeficiency Virus Type 1 Reverse Transcriptase Increase Susceptibility to Delavirdine and Impair Virus ReplicationHuang, W.Gamarnik, Andrea VanesaLimoli, K.Petropoulos, C. J.Whitcomb, J. M.HUMAN IMMUNODEFICIENCYVIRUS REPLICATIONHIVhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Suboptimal treatment of human immunodeficiency virus type 1 (HIV-1) infection with nonnucleoside reverse transcriptase inhibitors (NNRTI) often results in the rapid selection of drug-resistant virus. Several amino acid substitutions at position 190 of reverse transcriptase (RT) have been associated with reduced susceptibility to the NNRTI, especially nevirapine (NVP) and efavirenz (EFV). In the present study, the effects of various 190 substitutions observed in viruses obtained from NNRTI-experienced patients were characterized with patient-derived HIV isolates and confirmed with a panel of isogenic viruses. Compared to wild-type HIV, which has a glycine at position 190 (G190), viruses with 190 substitutions (A, C, Q, S, V, E, or T, collectively referred to as G190X substitutions) were markedly less susceptible to NVP and EFV. In contrast, delavirdine (DLV) susceptibility of these G190X viruses increased from 3 to 300-fold (hypersusceptible) or was only slightly decreased. The replication capacity of viruses with certain 190 substitutions (C, Q, V, T, and E) was severely impaired and was correlated with reduced virion-associated RT activity and incomplete protease (PR) processing of the viral p55(gag) polyprotein. These defects were the result of inadequate p160(gagpol) incorporation into virions. Compensatory mutations within RT and PR improved replication capacity, p55(gag) processing, and RT activity, presumably through increased incorporation of p160(gagpol) into virions. We observe an inverse relationship between the degree of NVP and EFV resistance and the impairment of viral replication in viruses with substitutions at 190 in RT. These observations may have important implications for the future design and development of antiretroviral drugs that restrict the outgrowth of resistant variants with high replication capacity.Fil: Huang, W.. ViroLogic; Estados UnidosFil: Gamarnik, Andrea Vanesa. ViroLogic; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Limoli, K.. ViroLogic; Estados UnidosFil: Petropoulos, C. J.. ViroLogic; Estados UnidosFil: Whitcomb, J. M.. ViroLogic; Estados UnidosAmerican Society for Microbiology2003-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/45215Huang, W.; Gamarnik, Andrea Vanesa; Limoli, K.; Petropoulos, C. J.; Whitcomb, J. M.; Amino Acid Substitutions at Position 190 of Human Immunodeficiency Virus Type 1 Reverse Transcriptase Increase Susceptibility to Delavirdine and Impair Virus Replication; American Society for Microbiology; Journal of Virology; 77; 2; 1-2003; 1512-15230022-538X1098-5514CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://jvi.asm.org/content/77/2/1512.longinfo:eu-repo/semantics/altIdentifier/doi/10.1128/JVI.77.2.1512-1523.2003info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:44:06Zoai:ri.conicet.gov.ar:11336/45215instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:44:07.08CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Amino Acid Substitutions at Position 190 of Human Immunodeficiency Virus Type 1 Reverse Transcriptase Increase Susceptibility to Delavirdine and Impair Virus Replication
title Amino Acid Substitutions at Position 190 of Human Immunodeficiency Virus Type 1 Reverse Transcriptase Increase Susceptibility to Delavirdine and Impair Virus Replication
spellingShingle Amino Acid Substitutions at Position 190 of Human Immunodeficiency Virus Type 1 Reverse Transcriptase Increase Susceptibility to Delavirdine and Impair Virus Replication
Huang, W.
HUMAN IMMUNODEFICIENCY
VIRUS REPLICATION
HIV
title_short Amino Acid Substitutions at Position 190 of Human Immunodeficiency Virus Type 1 Reverse Transcriptase Increase Susceptibility to Delavirdine and Impair Virus Replication
title_full Amino Acid Substitutions at Position 190 of Human Immunodeficiency Virus Type 1 Reverse Transcriptase Increase Susceptibility to Delavirdine and Impair Virus Replication
title_fullStr Amino Acid Substitutions at Position 190 of Human Immunodeficiency Virus Type 1 Reverse Transcriptase Increase Susceptibility to Delavirdine and Impair Virus Replication
title_full_unstemmed Amino Acid Substitutions at Position 190 of Human Immunodeficiency Virus Type 1 Reverse Transcriptase Increase Susceptibility to Delavirdine and Impair Virus Replication
title_sort Amino Acid Substitutions at Position 190 of Human Immunodeficiency Virus Type 1 Reverse Transcriptase Increase Susceptibility to Delavirdine and Impair Virus Replication
dc.creator.none.fl_str_mv Huang, W.
Gamarnik, Andrea Vanesa
Limoli, K.
Petropoulos, C. J.
Whitcomb, J. M.
author Huang, W.
author_facet Huang, W.
Gamarnik, Andrea Vanesa
Limoli, K.
Petropoulos, C. J.
Whitcomb, J. M.
author_role author
author2 Gamarnik, Andrea Vanesa
Limoli, K.
Petropoulos, C. J.
Whitcomb, J. M.
author2_role author
author
author
author
dc.subject.none.fl_str_mv HUMAN IMMUNODEFICIENCY
VIRUS REPLICATION
HIV
topic HUMAN IMMUNODEFICIENCY
VIRUS REPLICATION
HIV
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Suboptimal treatment of human immunodeficiency virus type 1 (HIV-1) infection with nonnucleoside reverse transcriptase inhibitors (NNRTI) often results in the rapid selection of drug-resistant virus. Several amino acid substitutions at position 190 of reverse transcriptase (RT) have been associated with reduced susceptibility to the NNRTI, especially nevirapine (NVP) and efavirenz (EFV). In the present study, the effects of various 190 substitutions observed in viruses obtained from NNRTI-experienced patients were characterized with patient-derived HIV isolates and confirmed with a panel of isogenic viruses. Compared to wild-type HIV, which has a glycine at position 190 (G190), viruses with 190 substitutions (A, C, Q, S, V, E, or T, collectively referred to as G190X substitutions) were markedly less susceptible to NVP and EFV. In contrast, delavirdine (DLV) susceptibility of these G190X viruses increased from 3 to 300-fold (hypersusceptible) or was only slightly decreased. The replication capacity of viruses with certain 190 substitutions (C, Q, V, T, and E) was severely impaired and was correlated with reduced virion-associated RT activity and incomplete protease (PR) processing of the viral p55(gag) polyprotein. These defects were the result of inadequate p160(gagpol) incorporation into virions. Compensatory mutations within RT and PR improved replication capacity, p55(gag) processing, and RT activity, presumably through increased incorporation of p160(gagpol) into virions. We observe an inverse relationship between the degree of NVP and EFV resistance and the impairment of viral replication in viruses with substitutions at 190 in RT. These observations may have important implications for the future design and development of antiretroviral drugs that restrict the outgrowth of resistant variants with high replication capacity.
Fil: Huang, W.. ViroLogic; Estados Unidos
Fil: Gamarnik, Andrea Vanesa. ViroLogic; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina
Fil: Limoli, K.. ViroLogic; Estados Unidos
Fil: Petropoulos, C. J.. ViroLogic; Estados Unidos
Fil: Whitcomb, J. M.. ViroLogic; Estados Unidos
description Suboptimal treatment of human immunodeficiency virus type 1 (HIV-1) infection with nonnucleoside reverse transcriptase inhibitors (NNRTI) often results in the rapid selection of drug-resistant virus. Several amino acid substitutions at position 190 of reverse transcriptase (RT) have been associated with reduced susceptibility to the NNRTI, especially nevirapine (NVP) and efavirenz (EFV). In the present study, the effects of various 190 substitutions observed in viruses obtained from NNRTI-experienced patients were characterized with patient-derived HIV isolates and confirmed with a panel of isogenic viruses. Compared to wild-type HIV, which has a glycine at position 190 (G190), viruses with 190 substitutions (A, C, Q, S, V, E, or T, collectively referred to as G190X substitutions) were markedly less susceptible to NVP and EFV. In contrast, delavirdine (DLV) susceptibility of these G190X viruses increased from 3 to 300-fold (hypersusceptible) or was only slightly decreased. The replication capacity of viruses with certain 190 substitutions (C, Q, V, T, and E) was severely impaired and was correlated with reduced virion-associated RT activity and incomplete protease (PR) processing of the viral p55(gag) polyprotein. These defects were the result of inadequate p160(gagpol) incorporation into virions. Compensatory mutations within RT and PR improved replication capacity, p55(gag) processing, and RT activity, presumably through increased incorporation of p160(gagpol) into virions. We observe an inverse relationship between the degree of NVP and EFV resistance and the impairment of viral replication in viruses with substitutions at 190 in RT. These observations may have important implications for the future design and development of antiretroviral drugs that restrict the outgrowth of resistant variants with high replication capacity.
publishDate 2003
dc.date.none.fl_str_mv 2003-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/45215
Huang, W.; Gamarnik, Andrea Vanesa; Limoli, K.; Petropoulos, C. J.; Whitcomb, J. M.; Amino Acid Substitutions at Position 190 of Human Immunodeficiency Virus Type 1 Reverse Transcriptase Increase Susceptibility to Delavirdine and Impair Virus Replication; American Society for Microbiology; Journal of Virology; 77; 2; 1-2003; 1512-1523
0022-538X
1098-5514
CONICET Digital
CONICET
url http://hdl.handle.net/11336/45215
identifier_str_mv Huang, W.; Gamarnik, Andrea Vanesa; Limoli, K.; Petropoulos, C. J.; Whitcomb, J. M.; Amino Acid Substitutions at Position 190 of Human Immunodeficiency Virus Type 1 Reverse Transcriptase Increase Susceptibility to Delavirdine and Impair Virus Replication; American Society for Microbiology; Journal of Virology; 77; 2; 1-2003; 1512-1523
0022-538X
1098-5514
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://jvi.asm.org/content/77/2/1512.long
info:eu-repo/semantics/altIdentifier/doi/10.1128/JVI.77.2.1512-1523.2003
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Society for Microbiology
publisher.none.fl_str_mv American Society for Microbiology
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268645500125184
score 13.13397