Nelfinavir-Resistant, Amprenavir-Hypersusceptible Strains of Human Immunodeficiency Virus Type 1 Carrying an N88S Mutation in Protease Have Reduced Infectivity, Reduced Replication...

Autores
Resch, W.; Ziermann, R.; Parkin, N.; Gamarnik, Andrea Vanesa; Swanstrom, R.
Año de publicación
2002
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The evolution of human immunodeficiency virus type 1 (HIV-1) strains with reduced susceptibility to protease inhibitors (PIs) is a major cause of PI treatment failure. A subset of subjects failing a therapy regimen containing the PI nelfinavir developed mutations at position 88 in the protease region. The N88S mutation occurring in some of these subjects induces amprenavir hypersusceptibility and a reduction of fitness and replication capacity. Here we demonstrate that substitutions L63P and V77I in protease, in combination, partially compensate for the loss of fitness, loss of replication capacity, loss of specific infectivity, and aberrant Gag processing induced by the N88S mutation. In addition, these mutations partially ablate amprenavir hypersusceptibility. Addition of mutation M46L to a strain harboring mutations L63P, V77I, and N88S resulted in a reduction of fitness and infectivity without changing Gag-processing efficiency, while amprenavir hypersusceptibility was further diminished. The ratio of reverse transcriptase activity to p24 protein was reduced in this strain compared to that in the other variants, suggesting that the M46L effect on fitness occurred through a mechanism different from a Gag-processing defect. We utilized these mutant strains to undertake a systematic comparison of indirect, single, cycle-based measures of fitness with direct, replication-based fitness assays and demonstrated that both yield consistent results. However, we observed that the magnitude of the fitness loss for one of the mutants varied depending on the assay used.
Fil: Resch, W.. University of North Carolina; Estados Unidos
Fil: Ziermann, R.. ViroLogic ; Estados Unidos
Fil: Parkin, N.. ViroLogic ; Estados Unidos
Fil: Gamarnik, Andrea Vanesa. ViroLogic ; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina
Fil: Swanstrom, R.. University of North Carolina; Estados Unidos
Materia
HIV
HUMAN IMMUNODEFICIENCY
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/45216

id CONICETDig_2e4f05a5561ed97a1e38abb22c467802
oai_identifier_str oai:ri.conicet.gov.ar:11336/45216
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Nelfinavir-Resistant, Amprenavir-Hypersusceptible Strains of Human Immunodeficiency Virus Type 1 Carrying an N88S Mutation in Protease Have Reduced Infectivity, Reduced Replication Capacity, and Reduced Fitness and Process the Gag Polyprotein Precursor AberrantlyResch, W.Ziermann, R.Parkin, N.Gamarnik, Andrea VanesaSwanstrom, R.HIVHUMAN IMMUNODEFICIENCYhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1The evolution of human immunodeficiency virus type 1 (HIV-1) strains with reduced susceptibility to protease inhibitors (PIs) is a major cause of PI treatment failure. A subset of subjects failing a therapy regimen containing the PI nelfinavir developed mutations at position 88 in the protease region. The N88S mutation occurring in some of these subjects induces amprenavir hypersusceptibility and a reduction of fitness and replication capacity. Here we demonstrate that substitutions L63P and V77I in protease, in combination, partially compensate for the loss of fitness, loss of replication capacity, loss of specific infectivity, and aberrant Gag processing induced by the N88S mutation. In addition, these mutations partially ablate amprenavir hypersusceptibility. Addition of mutation M46L to a strain harboring mutations L63P, V77I, and N88S resulted in a reduction of fitness and infectivity without changing Gag-processing efficiency, while amprenavir hypersusceptibility was further diminished. The ratio of reverse transcriptase activity to p24 protein was reduced in this strain compared to that in the other variants, suggesting that the M46L effect on fitness occurred through a mechanism different from a Gag-processing defect. We utilized these mutant strains to undertake a systematic comparison of indirect, single, cycle-based measures of fitness with direct, replication-based fitness assays and demonstrated that both yield consistent results. However, we observed that the magnitude of the fitness loss for one of the mutants varied depending on the assay used.Fil: Resch, W.. University of North Carolina; Estados UnidosFil: Ziermann, R.. ViroLogic ; Estados UnidosFil: Parkin, N.. ViroLogic ; Estados UnidosFil: Gamarnik, Andrea Vanesa. ViroLogic ; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Swanstrom, R.. University of North Carolina; Estados UnidosAmerican Society for Microbiology2002-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/45216Resch, W.; Ziermann, R.; Parkin, N.; Gamarnik, Andrea Vanesa; Swanstrom, R.; Nelfinavir-Resistant, Amprenavir-Hypersusceptible Strains of Human Immunodeficiency Virus Type 1 Carrying an N88S Mutation in Protease Have Reduced Infectivity, Reduced Replication Capacity, and Reduced Fitness and Process the Gag Polyprotein Precursor Aberrantly; American Society for Microbiology; Journal of Virology; 76; 17; 9-2002; 8659-86660022-538X1098-5514CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://jvi.asm.org/content/76/17/8659.longinfo:eu-repo/semantics/altIdentifier/doi/10.1128/JVI.76.17.8659-8666.2002info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:12:35Zoai:ri.conicet.gov.ar:11336/45216instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:12:36.028CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Nelfinavir-Resistant, Amprenavir-Hypersusceptible Strains of Human Immunodeficiency Virus Type 1 Carrying an N88S Mutation in Protease Have Reduced Infectivity, Reduced Replication Capacity, and Reduced Fitness and Process the Gag Polyprotein Precursor Aberrantly
title Nelfinavir-Resistant, Amprenavir-Hypersusceptible Strains of Human Immunodeficiency Virus Type 1 Carrying an N88S Mutation in Protease Have Reduced Infectivity, Reduced Replication Capacity, and Reduced Fitness and Process the Gag Polyprotein Precursor Aberrantly
spellingShingle Nelfinavir-Resistant, Amprenavir-Hypersusceptible Strains of Human Immunodeficiency Virus Type 1 Carrying an N88S Mutation in Protease Have Reduced Infectivity, Reduced Replication Capacity, and Reduced Fitness and Process the Gag Polyprotein Precursor Aberrantly
Resch, W.
HIV
HUMAN IMMUNODEFICIENCY
title_short Nelfinavir-Resistant, Amprenavir-Hypersusceptible Strains of Human Immunodeficiency Virus Type 1 Carrying an N88S Mutation in Protease Have Reduced Infectivity, Reduced Replication Capacity, and Reduced Fitness and Process the Gag Polyprotein Precursor Aberrantly
title_full Nelfinavir-Resistant, Amprenavir-Hypersusceptible Strains of Human Immunodeficiency Virus Type 1 Carrying an N88S Mutation in Protease Have Reduced Infectivity, Reduced Replication Capacity, and Reduced Fitness and Process the Gag Polyprotein Precursor Aberrantly
title_fullStr Nelfinavir-Resistant, Amprenavir-Hypersusceptible Strains of Human Immunodeficiency Virus Type 1 Carrying an N88S Mutation in Protease Have Reduced Infectivity, Reduced Replication Capacity, and Reduced Fitness and Process the Gag Polyprotein Precursor Aberrantly
title_full_unstemmed Nelfinavir-Resistant, Amprenavir-Hypersusceptible Strains of Human Immunodeficiency Virus Type 1 Carrying an N88S Mutation in Protease Have Reduced Infectivity, Reduced Replication Capacity, and Reduced Fitness and Process the Gag Polyprotein Precursor Aberrantly
title_sort Nelfinavir-Resistant, Amprenavir-Hypersusceptible Strains of Human Immunodeficiency Virus Type 1 Carrying an N88S Mutation in Protease Have Reduced Infectivity, Reduced Replication Capacity, and Reduced Fitness and Process the Gag Polyprotein Precursor Aberrantly
dc.creator.none.fl_str_mv Resch, W.
Ziermann, R.
Parkin, N.
Gamarnik, Andrea Vanesa
Swanstrom, R.
author Resch, W.
author_facet Resch, W.
Ziermann, R.
Parkin, N.
Gamarnik, Andrea Vanesa
Swanstrom, R.
author_role author
author2 Ziermann, R.
Parkin, N.
Gamarnik, Andrea Vanesa
Swanstrom, R.
author2_role author
author
author
author
dc.subject.none.fl_str_mv HIV
HUMAN IMMUNODEFICIENCY
topic HIV
HUMAN IMMUNODEFICIENCY
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The evolution of human immunodeficiency virus type 1 (HIV-1) strains with reduced susceptibility to protease inhibitors (PIs) is a major cause of PI treatment failure. A subset of subjects failing a therapy regimen containing the PI nelfinavir developed mutations at position 88 in the protease region. The N88S mutation occurring in some of these subjects induces amprenavir hypersusceptibility and a reduction of fitness and replication capacity. Here we demonstrate that substitutions L63P and V77I in protease, in combination, partially compensate for the loss of fitness, loss of replication capacity, loss of specific infectivity, and aberrant Gag processing induced by the N88S mutation. In addition, these mutations partially ablate amprenavir hypersusceptibility. Addition of mutation M46L to a strain harboring mutations L63P, V77I, and N88S resulted in a reduction of fitness and infectivity without changing Gag-processing efficiency, while amprenavir hypersusceptibility was further diminished. The ratio of reverse transcriptase activity to p24 protein was reduced in this strain compared to that in the other variants, suggesting that the M46L effect on fitness occurred through a mechanism different from a Gag-processing defect. We utilized these mutant strains to undertake a systematic comparison of indirect, single, cycle-based measures of fitness with direct, replication-based fitness assays and demonstrated that both yield consistent results. However, we observed that the magnitude of the fitness loss for one of the mutants varied depending on the assay used.
Fil: Resch, W.. University of North Carolina; Estados Unidos
Fil: Ziermann, R.. ViroLogic ; Estados Unidos
Fil: Parkin, N.. ViroLogic ; Estados Unidos
Fil: Gamarnik, Andrea Vanesa. ViroLogic ; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina
Fil: Swanstrom, R.. University of North Carolina; Estados Unidos
description The evolution of human immunodeficiency virus type 1 (HIV-1) strains with reduced susceptibility to protease inhibitors (PIs) is a major cause of PI treatment failure. A subset of subjects failing a therapy regimen containing the PI nelfinavir developed mutations at position 88 in the protease region. The N88S mutation occurring in some of these subjects induces amprenavir hypersusceptibility and a reduction of fitness and replication capacity. Here we demonstrate that substitutions L63P and V77I in protease, in combination, partially compensate for the loss of fitness, loss of replication capacity, loss of specific infectivity, and aberrant Gag processing induced by the N88S mutation. In addition, these mutations partially ablate amprenavir hypersusceptibility. Addition of mutation M46L to a strain harboring mutations L63P, V77I, and N88S resulted in a reduction of fitness and infectivity without changing Gag-processing efficiency, while amprenavir hypersusceptibility was further diminished. The ratio of reverse transcriptase activity to p24 protein was reduced in this strain compared to that in the other variants, suggesting that the M46L effect on fitness occurred through a mechanism different from a Gag-processing defect. We utilized these mutant strains to undertake a systematic comparison of indirect, single, cycle-based measures of fitness with direct, replication-based fitness assays and demonstrated that both yield consistent results. However, we observed that the magnitude of the fitness loss for one of the mutants varied depending on the assay used.
publishDate 2002
dc.date.none.fl_str_mv 2002-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/45216
Resch, W.; Ziermann, R.; Parkin, N.; Gamarnik, Andrea Vanesa; Swanstrom, R.; Nelfinavir-Resistant, Amprenavir-Hypersusceptible Strains of Human Immunodeficiency Virus Type 1 Carrying an N88S Mutation in Protease Have Reduced Infectivity, Reduced Replication Capacity, and Reduced Fitness and Process the Gag Polyprotein Precursor Aberrantly; American Society for Microbiology; Journal of Virology; 76; 17; 9-2002; 8659-8666
0022-538X
1098-5514
CONICET Digital
CONICET
url http://hdl.handle.net/11336/45216
identifier_str_mv Resch, W.; Ziermann, R.; Parkin, N.; Gamarnik, Andrea Vanesa; Swanstrom, R.; Nelfinavir-Resistant, Amprenavir-Hypersusceptible Strains of Human Immunodeficiency Virus Type 1 Carrying an N88S Mutation in Protease Have Reduced Infectivity, Reduced Replication Capacity, and Reduced Fitness and Process the Gag Polyprotein Precursor Aberrantly; American Society for Microbiology; Journal of Virology; 76; 17; 9-2002; 8659-8666
0022-538X
1098-5514
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://jvi.asm.org/content/76/17/8659.long
info:eu-repo/semantics/altIdentifier/doi/10.1128/JVI.76.17.8659-8666.2002
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Society for Microbiology
publisher.none.fl_str_mv American Society for Microbiology
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842980658049187840
score 12.993085