Nonpositive Curvature: A Geometric Approach to Hilbert-Schmidt Operators

Autores
Larotonda, Gabriel Andrés
Año de publicación
2007
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We give a Riemannian structure to the set Σ of positive invertible unitized Hilbert–Schmidt operators, by means of the trace inner product. This metric makes of Σ a nonpositively curved, simply connected and metrically complete Hilbert manifold. The manifold Σ is a universal model for symmetric spaces of the noncompact type: any such space can be isometrically embedded into Σ. We give an intrinsic algebraic characterization of convex closed submanifolds M. We study the group of isometries of such submanifolds: we prove that GM, the Banach–Lie group generated by M, acts isometrically and transitively on M. Moreover, GM admits a polar decomposition relative to M, namely GM M × K as Hilbert manifolds (here K is the isotropy of p = 1 for the action Ig :p → gpg∗), and also GM/K M so M is an homogeneous space. We obtain several decomposition theorems by means of geodesically convex submanifolds M. These decompositions are obtained via a nonlinear but analytic orthogonal projection ΠM :Σ → M, a map which is a contraction for the geodesic distance. As a byproduct, we prove the isomorphism NM Σ (here NM stands for the normal bundle of a convex closed submanifold M). Writing down the factorizations for fixed ea, we obtain ea = ex evex with ex ∈ M and v orthogonal to M at p = 1. As a corollary we obtain decompositions for the full group of invertible elements G M × exp(T1M⊥) × K.
Fil: Larotonda, Gabriel Andrés. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina
Materia
Exponential Metric Increasing Property
Hilbert-Schmidt Operator
Nonpositive Curvature
Short Geodesic
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/19447

id CONICETDig_4c3e7f1f6a9cce3ae9a02210549e6710
oai_identifier_str oai:ri.conicet.gov.ar:11336/19447
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Nonpositive Curvature: A Geometric Approach to Hilbert-Schmidt OperatorsLarotonda, Gabriel AndrésExponential Metric Increasing PropertyHilbert-Schmidt OperatorNonpositive CurvatureShort Geodesichttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We give a Riemannian structure to the set Σ of positive invertible unitized Hilbert–Schmidt operators, by means of the trace inner product. This metric makes of Σ a nonpositively curved, simply connected and metrically complete Hilbert manifold. The manifold Σ is a universal model for symmetric spaces of the noncompact type: any such space can be isometrically embedded into Σ. We give an intrinsic algebraic characterization of convex closed submanifolds M. We study the group of isometries of such submanifolds: we prove that GM, the Banach–Lie group generated by M, acts isometrically and transitively on M. Moreover, GM admits a polar decomposition relative to M, namely GM M × K as Hilbert manifolds (here K is the isotropy of p = 1 for the action Ig :p → gpg∗), and also GM/K M so M is an homogeneous space. We obtain several decomposition theorems by means of geodesically convex submanifolds M. These decompositions are obtained via a nonlinear but analytic orthogonal projection ΠM :Σ → M, a map which is a contraction for the geodesic distance. As a byproduct, we prove the isomorphism NM Σ (here NM stands for the normal bundle of a convex closed submanifold M). Writing down the factorizations for fixed ea, we obtain ea = ex evex with ex ∈ M and v orthogonal to M at p = 1. As a corollary we obtain decompositions for the full group of invertible elements G M × exp(T1M⊥) × K.Fil: Larotonda, Gabriel Andrés. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; ArgentinaElsevier Science2007-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/19447Larotonda, Gabriel Andrés; Nonpositive Curvature: A Geometric Approach to Hilbert-Schmidt Operators; Elsevier Science; Differential Geometry and its Applications; 25; 6; 12-2007; 679-7000926-2245CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0926224507000526info:eu-repo/semantics/altIdentifier/doi/10.1016/j.difgeo.2007.06.016info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:43:00Zoai:ri.conicet.gov.ar:11336/19447instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:43:00.33CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Nonpositive Curvature: A Geometric Approach to Hilbert-Schmidt Operators
title Nonpositive Curvature: A Geometric Approach to Hilbert-Schmidt Operators
spellingShingle Nonpositive Curvature: A Geometric Approach to Hilbert-Schmidt Operators
Larotonda, Gabriel Andrés
Exponential Metric Increasing Property
Hilbert-Schmidt Operator
Nonpositive Curvature
Short Geodesic
title_short Nonpositive Curvature: A Geometric Approach to Hilbert-Schmidt Operators
title_full Nonpositive Curvature: A Geometric Approach to Hilbert-Schmidt Operators
title_fullStr Nonpositive Curvature: A Geometric Approach to Hilbert-Schmidt Operators
title_full_unstemmed Nonpositive Curvature: A Geometric Approach to Hilbert-Schmidt Operators
title_sort Nonpositive Curvature: A Geometric Approach to Hilbert-Schmidt Operators
dc.creator.none.fl_str_mv Larotonda, Gabriel Andrés
author Larotonda, Gabriel Andrés
author_facet Larotonda, Gabriel Andrés
author_role author
dc.subject.none.fl_str_mv Exponential Metric Increasing Property
Hilbert-Schmidt Operator
Nonpositive Curvature
Short Geodesic
topic Exponential Metric Increasing Property
Hilbert-Schmidt Operator
Nonpositive Curvature
Short Geodesic
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We give a Riemannian structure to the set Σ of positive invertible unitized Hilbert–Schmidt operators, by means of the trace inner product. This metric makes of Σ a nonpositively curved, simply connected and metrically complete Hilbert manifold. The manifold Σ is a universal model for symmetric spaces of the noncompact type: any such space can be isometrically embedded into Σ. We give an intrinsic algebraic characterization of convex closed submanifolds M. We study the group of isometries of such submanifolds: we prove that GM, the Banach–Lie group generated by M, acts isometrically and transitively on M. Moreover, GM admits a polar decomposition relative to M, namely GM M × K as Hilbert manifolds (here K is the isotropy of p = 1 for the action Ig :p → gpg∗), and also GM/K M so M is an homogeneous space. We obtain several decomposition theorems by means of geodesically convex submanifolds M. These decompositions are obtained via a nonlinear but analytic orthogonal projection ΠM :Σ → M, a map which is a contraction for the geodesic distance. As a byproduct, we prove the isomorphism NM Σ (here NM stands for the normal bundle of a convex closed submanifold M). Writing down the factorizations for fixed ea, we obtain ea = ex evex with ex ∈ M and v orthogonal to M at p = 1. As a corollary we obtain decompositions for the full group of invertible elements G M × exp(T1M⊥) × K.
Fil: Larotonda, Gabriel Andrés. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina
description We give a Riemannian structure to the set Σ of positive invertible unitized Hilbert–Schmidt operators, by means of the trace inner product. This metric makes of Σ a nonpositively curved, simply connected and metrically complete Hilbert manifold. The manifold Σ is a universal model for symmetric spaces of the noncompact type: any such space can be isometrically embedded into Σ. We give an intrinsic algebraic characterization of convex closed submanifolds M. We study the group of isometries of such submanifolds: we prove that GM, the Banach–Lie group generated by M, acts isometrically and transitively on M. Moreover, GM admits a polar decomposition relative to M, namely GM M × K as Hilbert manifolds (here K is the isotropy of p = 1 for the action Ig :p → gpg∗), and also GM/K M so M is an homogeneous space. We obtain several decomposition theorems by means of geodesically convex submanifolds M. These decompositions are obtained via a nonlinear but analytic orthogonal projection ΠM :Σ → M, a map which is a contraction for the geodesic distance. As a byproduct, we prove the isomorphism NM Σ (here NM stands for the normal bundle of a convex closed submanifold M). Writing down the factorizations for fixed ea, we obtain ea = ex evex with ex ∈ M and v orthogonal to M at p = 1. As a corollary we obtain decompositions for the full group of invertible elements G M × exp(T1M⊥) × K.
publishDate 2007
dc.date.none.fl_str_mv 2007-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/19447
Larotonda, Gabriel Andrés; Nonpositive Curvature: A Geometric Approach to Hilbert-Schmidt Operators; Elsevier Science; Differential Geometry and its Applications; 25; 6; 12-2007; 679-700
0926-2245
CONICET Digital
CONICET
url http://hdl.handle.net/11336/19447
identifier_str_mv Larotonda, Gabriel Andrés; Nonpositive Curvature: A Geometric Approach to Hilbert-Schmidt Operators; Elsevier Science; Differential Geometry and its Applications; 25; 6; 12-2007; 679-700
0926-2245
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0926224507000526
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.difgeo.2007.06.016
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613352958984192
score 13.070432