Nonpositive Curvature: A Geometric Approach to Hilbert-Schmidt Operators
- Autores
- Larotonda, Gabriel Andrés
- Año de publicación
- 2007
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We give a Riemannian structure to the set Σ of positive invertible unitized Hilbert–Schmidt operators, by means of the trace inner product. This metric makes of Σ a nonpositively curved, simply connected and metrically complete Hilbert manifold. The manifold Σ is a universal model for symmetric spaces of the noncompact type: any such space can be isometrically embedded into Σ. We give an intrinsic algebraic characterization of convex closed submanifolds M. We study the group of isometries of such submanifolds: we prove that GM, the Banach–Lie group generated by M, acts isometrically and transitively on M. Moreover, GM admits a polar decomposition relative to M, namely GM M × K as Hilbert manifolds (here K is the isotropy of p = 1 for the action Ig :p → gpg∗), and also GM/K M so M is an homogeneous space. We obtain several decomposition theorems by means of geodesically convex submanifolds M. These decompositions are obtained via a nonlinear but analytic orthogonal projection ΠM :Σ → M, a map which is a contraction for the geodesic distance. As a byproduct, we prove the isomorphism NM Σ (here NM stands for the normal bundle of a convex closed submanifold M). Writing down the factorizations for fixed ea, we obtain ea = ex evex with ex ∈ M and v orthogonal to M at p = 1. As a corollary we obtain decompositions for the full group of invertible elements G M × exp(T1M⊥) × K.
Fil: Larotonda, Gabriel Andrés. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina - Materia
-
Exponential Metric Increasing Property
Hilbert-Schmidt Operator
Nonpositive Curvature
Short Geodesic - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/19447
Ver los metadatos del registro completo
id |
CONICETDig_4c3e7f1f6a9cce3ae9a02210549e6710 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/19447 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Nonpositive Curvature: A Geometric Approach to Hilbert-Schmidt OperatorsLarotonda, Gabriel AndrésExponential Metric Increasing PropertyHilbert-Schmidt OperatorNonpositive CurvatureShort Geodesichttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We give a Riemannian structure to the set Σ of positive invertible unitized Hilbert–Schmidt operators, by means of the trace inner product. This metric makes of Σ a nonpositively curved, simply connected and metrically complete Hilbert manifold. The manifold Σ is a universal model for symmetric spaces of the noncompact type: any such space can be isometrically embedded into Σ. We give an intrinsic algebraic characterization of convex closed submanifolds M. We study the group of isometries of such submanifolds: we prove that GM, the Banach–Lie group generated by M, acts isometrically and transitively on M. Moreover, GM admits a polar decomposition relative to M, namely GM M × K as Hilbert manifolds (here K is the isotropy of p = 1 for the action Ig :p → gpg∗), and also GM/K M so M is an homogeneous space. We obtain several decomposition theorems by means of geodesically convex submanifolds M. These decompositions are obtained via a nonlinear but analytic orthogonal projection ΠM :Σ → M, a map which is a contraction for the geodesic distance. As a byproduct, we prove the isomorphism NM Σ (here NM stands for the normal bundle of a convex closed submanifold M). Writing down the factorizations for fixed ea, we obtain ea = ex evex with ex ∈ M and v orthogonal to M at p = 1. As a corollary we obtain decompositions for the full group of invertible elements G M × exp(T1M⊥) × K.Fil: Larotonda, Gabriel Andrés. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; ArgentinaElsevier Science2007-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/19447Larotonda, Gabriel Andrés; Nonpositive Curvature: A Geometric Approach to Hilbert-Schmidt Operators; Elsevier Science; Differential Geometry and its Applications; 25; 6; 12-2007; 679-7000926-2245CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0926224507000526info:eu-repo/semantics/altIdentifier/doi/10.1016/j.difgeo.2007.06.016info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:43:00Zoai:ri.conicet.gov.ar:11336/19447instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:43:00.33CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Nonpositive Curvature: A Geometric Approach to Hilbert-Schmidt Operators |
title |
Nonpositive Curvature: A Geometric Approach to Hilbert-Schmidt Operators |
spellingShingle |
Nonpositive Curvature: A Geometric Approach to Hilbert-Schmidt Operators Larotonda, Gabriel Andrés Exponential Metric Increasing Property Hilbert-Schmidt Operator Nonpositive Curvature Short Geodesic |
title_short |
Nonpositive Curvature: A Geometric Approach to Hilbert-Schmidt Operators |
title_full |
Nonpositive Curvature: A Geometric Approach to Hilbert-Schmidt Operators |
title_fullStr |
Nonpositive Curvature: A Geometric Approach to Hilbert-Schmidt Operators |
title_full_unstemmed |
Nonpositive Curvature: A Geometric Approach to Hilbert-Schmidt Operators |
title_sort |
Nonpositive Curvature: A Geometric Approach to Hilbert-Schmidt Operators |
dc.creator.none.fl_str_mv |
Larotonda, Gabriel Andrés |
author |
Larotonda, Gabriel Andrés |
author_facet |
Larotonda, Gabriel Andrés |
author_role |
author |
dc.subject.none.fl_str_mv |
Exponential Metric Increasing Property Hilbert-Schmidt Operator Nonpositive Curvature Short Geodesic |
topic |
Exponential Metric Increasing Property Hilbert-Schmidt Operator Nonpositive Curvature Short Geodesic |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We give a Riemannian structure to the set Σ of positive invertible unitized Hilbert–Schmidt operators, by means of the trace inner product. This metric makes of Σ a nonpositively curved, simply connected and metrically complete Hilbert manifold. The manifold Σ is a universal model for symmetric spaces of the noncompact type: any such space can be isometrically embedded into Σ. We give an intrinsic algebraic characterization of convex closed submanifolds M. We study the group of isometries of such submanifolds: we prove that GM, the Banach–Lie group generated by M, acts isometrically and transitively on M. Moreover, GM admits a polar decomposition relative to M, namely GM M × K as Hilbert manifolds (here K is the isotropy of p = 1 for the action Ig :p → gpg∗), and also GM/K M so M is an homogeneous space. We obtain several decomposition theorems by means of geodesically convex submanifolds M. These decompositions are obtained via a nonlinear but analytic orthogonal projection ΠM :Σ → M, a map which is a contraction for the geodesic distance. As a byproduct, we prove the isomorphism NM Σ (here NM stands for the normal bundle of a convex closed submanifold M). Writing down the factorizations for fixed ea, we obtain ea = ex evex with ex ∈ M and v orthogonal to M at p = 1. As a corollary we obtain decompositions for the full group of invertible elements G M × exp(T1M⊥) × K. Fil: Larotonda, Gabriel Andrés. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina |
description |
We give a Riemannian structure to the set Σ of positive invertible unitized Hilbert–Schmidt operators, by means of the trace inner product. This metric makes of Σ a nonpositively curved, simply connected and metrically complete Hilbert manifold. The manifold Σ is a universal model for symmetric spaces of the noncompact type: any such space can be isometrically embedded into Σ. We give an intrinsic algebraic characterization of convex closed submanifolds M. We study the group of isometries of such submanifolds: we prove that GM, the Banach–Lie group generated by M, acts isometrically and transitively on M. Moreover, GM admits a polar decomposition relative to M, namely GM M × K as Hilbert manifolds (here K is the isotropy of p = 1 for the action Ig :p → gpg∗), and also GM/K M so M is an homogeneous space. We obtain several decomposition theorems by means of geodesically convex submanifolds M. These decompositions are obtained via a nonlinear but analytic orthogonal projection ΠM :Σ → M, a map which is a contraction for the geodesic distance. As a byproduct, we prove the isomorphism NM Σ (here NM stands for the normal bundle of a convex closed submanifold M). Writing down the factorizations for fixed ea, we obtain ea = ex evex with ex ∈ M and v orthogonal to M at p = 1. As a corollary we obtain decompositions for the full group of invertible elements G M × exp(T1M⊥) × K. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/19447 Larotonda, Gabriel Andrés; Nonpositive Curvature: A Geometric Approach to Hilbert-Schmidt Operators; Elsevier Science; Differential Geometry and its Applications; 25; 6; 12-2007; 679-700 0926-2245 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/19447 |
identifier_str_mv |
Larotonda, Gabriel Andrés; Nonpositive Curvature: A Geometric Approach to Hilbert-Schmidt Operators; Elsevier Science; Differential Geometry and its Applications; 25; 6; 12-2007; 679-700 0926-2245 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0926224507000526 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.difgeo.2007.06.016 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613352958984192 |
score |
13.070432 |