A clinically aligned experimental approach for quantitative characterization of patient-specific cardiovascular models

Autores
Narata, Ana Paula; Silva de Moura, Fernando; Patat, Fréderic; Marzo, Alberto; Larrabide, Ignacio; Gregoire, Jean Marc; Perrault, Cecile; Sennoga, Charles A.; Bouakaz, Ayache
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Recent improvements in computational tools opened the possibility of patient-specific modeling to aid clinicians during diagnosis, treatment, and monitoring. One example is the modeling of blood flow for surgical planning, where modeling can help predict the prognosis. Computational analysis is used to extract hemodynamic information about the case; however, these methods are sensitive to assumptions on blood properties, boundary conditions, and appropriate geometry accuracy. When available, experimental measurements can be used to validate the results and, among the modalities, ultrasound-based methods are suitable due to their relative low cost and non-invasiveness. This work proposes a procedure to create accurate patient-specific silicone replicas of blood vessels and a power Doppler compatible experimental setup able to simulate and measure realistic flow conditions. The assessment of silicone model geometry shows small discrepancies between these and the target geometries (median of surface error lies within 57 μm and 82 μm). Power Doppler measurements were compared against computational fluid dynamics results, showing discrepancies within 10% near the wall. The experimental approach offers a setup to quantify flow in in vitro systems and provide more accurate results where other techniques (e.g., particle image velocimetry and particle tracking velocimetry) have shown limitations due to the interference of the interface.
Fil: Narata, Ana Paula. Universite de Tours; Francia
Fil: Silva de Moura, Fernando. Universidad Federal Do Abc; Brasil
Fil: Patat, Fréderic. Universite de Tours; Francia
Fil: Marzo, Alberto. The University Of Sheffield; Reino Unido
Fil: Larrabide, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina
Fil: Gregoire, Jean Marc. Universite de Tours; Francia
Fil: Perrault, Cecile. The University Of Sheffield; Reino Unido
Fil: Sennoga, Charles A.. Universite de Tours; Francia
Fil: Bouakaz, Ayache. Universite de Tours; Francia
Materia
flow diverter
aneurysms
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/139642

id CONICETDig_4c14dc035e89336f07e04beeb9d9b9a0
oai_identifier_str oai:ri.conicet.gov.ar:11336/139642
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A clinically aligned experimental approach for quantitative characterization of patient-specific cardiovascular modelsNarata, Ana PaulaSilva de Moura, FernandoPatat, FrédericMarzo, AlbertoLarrabide, IgnacioGregoire, Jean MarcPerrault, CecileSennoga, Charles A.Bouakaz, Ayacheflow diverteraneurysmshttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2Recent improvements in computational tools opened the possibility of patient-specific modeling to aid clinicians during diagnosis, treatment, and monitoring. One example is the modeling of blood flow for surgical planning, where modeling can help predict the prognosis. Computational analysis is used to extract hemodynamic information about the case; however, these methods are sensitive to assumptions on blood properties, boundary conditions, and appropriate geometry accuracy. When available, experimental measurements can be used to validate the results and, among the modalities, ultrasound-based methods are suitable due to their relative low cost and non-invasiveness. This work proposes a procedure to create accurate patient-specific silicone replicas of blood vessels and a power Doppler compatible experimental setup able to simulate and measure realistic flow conditions. The assessment of silicone model geometry shows small discrepancies between these and the target geometries (median of surface error lies within 57 μm and 82 μm). Power Doppler measurements were compared against computational fluid dynamics results, showing discrepancies within 10% near the wall. The experimental approach offers a setup to quantify flow in in vitro systems and provide more accurate results where other techniques (e.g., particle image velocimetry and particle tracking velocimetry) have shown limitations due to the interference of the interface.Fil: Narata, Ana Paula. Universite de Tours; FranciaFil: Silva de Moura, Fernando. Universidad Federal Do Abc; BrasilFil: Patat, Fréderic. Universite de Tours; FranciaFil: Marzo, Alberto. The University Of Sheffield; Reino UnidoFil: Larrabide, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; ArgentinaFil: Gregoire, Jean Marc. Universite de Tours; FranciaFil: Perrault, Cecile. The University Of Sheffield; Reino UnidoFil: Sennoga, Charles A.. Universite de Tours; FranciaFil: Bouakaz, Ayache. Universite de Tours; FranciaAmerican Institute of Physics2020-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/139642Narata, Ana Paula; Silva de Moura, Fernando; Patat, Fréderic; Marzo, Alberto; Larrabide, Ignacio; et al.; A clinically aligned experimental approach for quantitative characterization of patient-specific cardiovascular models; American Institute of Physics; AIP Advances; 10; 4; 4-2020; 1-102158-3226CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1063/1.5141350info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:35:06Zoai:ri.conicet.gov.ar:11336/139642instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:35:06.25CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A clinically aligned experimental approach for quantitative characterization of patient-specific cardiovascular models
title A clinically aligned experimental approach for quantitative characterization of patient-specific cardiovascular models
spellingShingle A clinically aligned experimental approach for quantitative characterization of patient-specific cardiovascular models
Narata, Ana Paula
flow diverter
aneurysms
title_short A clinically aligned experimental approach for quantitative characterization of patient-specific cardiovascular models
title_full A clinically aligned experimental approach for quantitative characterization of patient-specific cardiovascular models
title_fullStr A clinically aligned experimental approach for quantitative characterization of patient-specific cardiovascular models
title_full_unstemmed A clinically aligned experimental approach for quantitative characterization of patient-specific cardiovascular models
title_sort A clinically aligned experimental approach for quantitative characterization of patient-specific cardiovascular models
dc.creator.none.fl_str_mv Narata, Ana Paula
Silva de Moura, Fernando
Patat, Fréderic
Marzo, Alberto
Larrabide, Ignacio
Gregoire, Jean Marc
Perrault, Cecile
Sennoga, Charles A.
Bouakaz, Ayache
author Narata, Ana Paula
author_facet Narata, Ana Paula
Silva de Moura, Fernando
Patat, Fréderic
Marzo, Alberto
Larrabide, Ignacio
Gregoire, Jean Marc
Perrault, Cecile
Sennoga, Charles A.
Bouakaz, Ayache
author_role author
author2 Silva de Moura, Fernando
Patat, Fréderic
Marzo, Alberto
Larrabide, Ignacio
Gregoire, Jean Marc
Perrault, Cecile
Sennoga, Charles A.
Bouakaz, Ayache
author2_role author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv flow diverter
aneurysms
topic flow diverter
aneurysms
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.2
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Recent improvements in computational tools opened the possibility of patient-specific modeling to aid clinicians during diagnosis, treatment, and monitoring. One example is the modeling of blood flow for surgical planning, where modeling can help predict the prognosis. Computational analysis is used to extract hemodynamic information about the case; however, these methods are sensitive to assumptions on blood properties, boundary conditions, and appropriate geometry accuracy. When available, experimental measurements can be used to validate the results and, among the modalities, ultrasound-based methods are suitable due to their relative low cost and non-invasiveness. This work proposes a procedure to create accurate patient-specific silicone replicas of blood vessels and a power Doppler compatible experimental setup able to simulate and measure realistic flow conditions. The assessment of silicone model geometry shows small discrepancies between these and the target geometries (median of surface error lies within 57 μm and 82 μm). Power Doppler measurements were compared against computational fluid dynamics results, showing discrepancies within 10% near the wall. The experimental approach offers a setup to quantify flow in in vitro systems and provide more accurate results where other techniques (e.g., particle image velocimetry and particle tracking velocimetry) have shown limitations due to the interference of the interface.
Fil: Narata, Ana Paula. Universite de Tours; Francia
Fil: Silva de Moura, Fernando. Universidad Federal Do Abc; Brasil
Fil: Patat, Fréderic. Universite de Tours; Francia
Fil: Marzo, Alberto. The University Of Sheffield; Reino Unido
Fil: Larrabide, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina
Fil: Gregoire, Jean Marc. Universite de Tours; Francia
Fil: Perrault, Cecile. The University Of Sheffield; Reino Unido
Fil: Sennoga, Charles A.. Universite de Tours; Francia
Fil: Bouakaz, Ayache. Universite de Tours; Francia
description Recent improvements in computational tools opened the possibility of patient-specific modeling to aid clinicians during diagnosis, treatment, and monitoring. One example is the modeling of blood flow for surgical planning, where modeling can help predict the prognosis. Computational analysis is used to extract hemodynamic information about the case; however, these methods are sensitive to assumptions on blood properties, boundary conditions, and appropriate geometry accuracy. When available, experimental measurements can be used to validate the results and, among the modalities, ultrasound-based methods are suitable due to their relative low cost and non-invasiveness. This work proposes a procedure to create accurate patient-specific silicone replicas of blood vessels and a power Doppler compatible experimental setup able to simulate and measure realistic flow conditions. The assessment of silicone model geometry shows small discrepancies between these and the target geometries (median of surface error lies within 57 μm and 82 μm). Power Doppler measurements were compared against computational fluid dynamics results, showing discrepancies within 10% near the wall. The experimental approach offers a setup to quantify flow in in vitro systems and provide more accurate results where other techniques (e.g., particle image velocimetry and particle tracking velocimetry) have shown limitations due to the interference of the interface.
publishDate 2020
dc.date.none.fl_str_mv 2020-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/139642
Narata, Ana Paula; Silva de Moura, Fernando; Patat, Fréderic; Marzo, Alberto; Larrabide, Ignacio; et al.; A clinically aligned experimental approach for quantitative characterization of patient-specific cardiovascular models; American Institute of Physics; AIP Advances; 10; 4; 4-2020; 1-10
2158-3226
CONICET Digital
CONICET
url http://hdl.handle.net/11336/139642
identifier_str_mv Narata, Ana Paula; Silva de Moura, Fernando; Patat, Fréderic; Marzo, Alberto; Larrabide, Ignacio; et al.; A clinically aligned experimental approach for quantitative characterization of patient-specific cardiovascular models; American Institute of Physics; AIP Advances; 10; 4; 4-2020; 1-10
2158-3226
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1063/1.5141350
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Institute of Physics
publisher.none.fl_str_mv American Institute of Physics
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614368161955840
score 13.070432