A clinically aligned experimental approach for quantitative characterization of patient-specific cardiovascular models
- Autores
- Narata, Ana Paula; Silva de Moura, Fernando; Patat, Fréderic; Marzo, Alberto; Larrabide, Ignacio; Gregoire, Jean Marc; Perrault, Cecile; Sennoga, Charles A.; Bouakaz, Ayache
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Recent improvements in computational tools opened the possibility of patient-specific modeling to aid clinicians during diagnosis, treatment, and monitoring. One example is the modeling of blood flow for surgical planning, where modeling can help predict the prognosis. Computational analysis is used to extract hemodynamic information about the case; however, these methods are sensitive to assumptions on blood properties, boundary conditions, and appropriate geometry accuracy. When available, experimental measurements can be used to validate the results and, among the modalities, ultrasound-based methods are suitable due to their relative low cost and non-invasiveness. This work proposes a procedure to create accurate patient-specific silicone replicas of blood vessels and a power Doppler compatible experimental setup able to simulate and measure realistic flow conditions. The assessment of silicone model geometry shows small discrepancies between these and the target geometries (median of surface error lies within 57 μm and 82 μm). Power Doppler measurements were compared against computational fluid dynamics results, showing discrepancies within 10% near the wall. The experimental approach offers a setup to quantify flow in in vitro systems and provide more accurate results where other techniques (e.g., particle image velocimetry and particle tracking velocimetry) have shown limitations due to the interference of the interface.
Fil: Narata, Ana Paula. Universite de Tours; Francia
Fil: Silva de Moura, Fernando. Universidad Federal Do Abc; Brasil
Fil: Patat, Fréderic. Universite de Tours; Francia
Fil: Marzo, Alberto. The University Of Sheffield; Reino Unido
Fil: Larrabide, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina
Fil: Gregoire, Jean Marc. Universite de Tours; Francia
Fil: Perrault, Cecile. The University Of Sheffield; Reino Unido
Fil: Sennoga, Charles A.. Universite de Tours; Francia
Fil: Bouakaz, Ayache. Universite de Tours; Francia - Materia
-
flow diverter
aneurysms - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/139642
Ver los metadatos del registro completo
id |
CONICETDig_4c14dc035e89336f07e04beeb9d9b9a0 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/139642 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A clinically aligned experimental approach for quantitative characterization of patient-specific cardiovascular modelsNarata, Ana PaulaSilva de Moura, FernandoPatat, FrédericMarzo, AlbertoLarrabide, IgnacioGregoire, Jean MarcPerrault, CecileSennoga, Charles A.Bouakaz, Ayacheflow diverteraneurysmshttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2Recent improvements in computational tools opened the possibility of patient-specific modeling to aid clinicians during diagnosis, treatment, and monitoring. One example is the modeling of blood flow for surgical planning, where modeling can help predict the prognosis. Computational analysis is used to extract hemodynamic information about the case; however, these methods are sensitive to assumptions on blood properties, boundary conditions, and appropriate geometry accuracy. When available, experimental measurements can be used to validate the results and, among the modalities, ultrasound-based methods are suitable due to their relative low cost and non-invasiveness. This work proposes a procedure to create accurate patient-specific silicone replicas of blood vessels and a power Doppler compatible experimental setup able to simulate and measure realistic flow conditions. The assessment of silicone model geometry shows small discrepancies between these and the target geometries (median of surface error lies within 57 μm and 82 μm). Power Doppler measurements were compared against computational fluid dynamics results, showing discrepancies within 10% near the wall. The experimental approach offers a setup to quantify flow in in vitro systems and provide more accurate results where other techniques (e.g., particle image velocimetry and particle tracking velocimetry) have shown limitations due to the interference of the interface.Fil: Narata, Ana Paula. Universite de Tours; FranciaFil: Silva de Moura, Fernando. Universidad Federal Do Abc; BrasilFil: Patat, Fréderic. Universite de Tours; FranciaFil: Marzo, Alberto. The University Of Sheffield; Reino UnidoFil: Larrabide, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; ArgentinaFil: Gregoire, Jean Marc. Universite de Tours; FranciaFil: Perrault, Cecile. The University Of Sheffield; Reino UnidoFil: Sennoga, Charles A.. Universite de Tours; FranciaFil: Bouakaz, Ayache. Universite de Tours; FranciaAmerican Institute of Physics2020-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/139642Narata, Ana Paula; Silva de Moura, Fernando; Patat, Fréderic; Marzo, Alberto; Larrabide, Ignacio; et al.; A clinically aligned experimental approach for quantitative characterization of patient-specific cardiovascular models; American Institute of Physics; AIP Advances; 10; 4; 4-2020; 1-102158-3226CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1063/1.5141350info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:35:06Zoai:ri.conicet.gov.ar:11336/139642instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:35:06.25CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A clinically aligned experimental approach for quantitative characterization of patient-specific cardiovascular models |
title |
A clinically aligned experimental approach for quantitative characterization of patient-specific cardiovascular models |
spellingShingle |
A clinically aligned experimental approach for quantitative characterization of patient-specific cardiovascular models Narata, Ana Paula flow diverter aneurysms |
title_short |
A clinically aligned experimental approach for quantitative characterization of patient-specific cardiovascular models |
title_full |
A clinically aligned experimental approach for quantitative characterization of patient-specific cardiovascular models |
title_fullStr |
A clinically aligned experimental approach for quantitative characterization of patient-specific cardiovascular models |
title_full_unstemmed |
A clinically aligned experimental approach for quantitative characterization of patient-specific cardiovascular models |
title_sort |
A clinically aligned experimental approach for quantitative characterization of patient-specific cardiovascular models |
dc.creator.none.fl_str_mv |
Narata, Ana Paula Silva de Moura, Fernando Patat, Fréderic Marzo, Alberto Larrabide, Ignacio Gregoire, Jean Marc Perrault, Cecile Sennoga, Charles A. Bouakaz, Ayache |
author |
Narata, Ana Paula |
author_facet |
Narata, Ana Paula Silva de Moura, Fernando Patat, Fréderic Marzo, Alberto Larrabide, Ignacio Gregoire, Jean Marc Perrault, Cecile Sennoga, Charles A. Bouakaz, Ayache |
author_role |
author |
author2 |
Silva de Moura, Fernando Patat, Fréderic Marzo, Alberto Larrabide, Ignacio Gregoire, Jean Marc Perrault, Cecile Sennoga, Charles A. Bouakaz, Ayache |
author2_role |
author author author author author author author author |
dc.subject.none.fl_str_mv |
flow diverter aneurysms |
topic |
flow diverter aneurysms |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Recent improvements in computational tools opened the possibility of patient-specific modeling to aid clinicians during diagnosis, treatment, and monitoring. One example is the modeling of blood flow for surgical planning, where modeling can help predict the prognosis. Computational analysis is used to extract hemodynamic information about the case; however, these methods are sensitive to assumptions on blood properties, boundary conditions, and appropriate geometry accuracy. When available, experimental measurements can be used to validate the results and, among the modalities, ultrasound-based methods are suitable due to their relative low cost and non-invasiveness. This work proposes a procedure to create accurate patient-specific silicone replicas of blood vessels and a power Doppler compatible experimental setup able to simulate and measure realistic flow conditions. The assessment of silicone model geometry shows small discrepancies between these and the target geometries (median of surface error lies within 57 μm and 82 μm). Power Doppler measurements were compared against computational fluid dynamics results, showing discrepancies within 10% near the wall. The experimental approach offers a setup to quantify flow in in vitro systems and provide more accurate results where other techniques (e.g., particle image velocimetry and particle tracking velocimetry) have shown limitations due to the interference of the interface. Fil: Narata, Ana Paula. Universite de Tours; Francia Fil: Silva de Moura, Fernando. Universidad Federal Do Abc; Brasil Fil: Patat, Fréderic. Universite de Tours; Francia Fil: Marzo, Alberto. The University Of Sheffield; Reino Unido Fil: Larrabide, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina Fil: Gregoire, Jean Marc. Universite de Tours; Francia Fil: Perrault, Cecile. The University Of Sheffield; Reino Unido Fil: Sennoga, Charles A.. Universite de Tours; Francia Fil: Bouakaz, Ayache. Universite de Tours; Francia |
description |
Recent improvements in computational tools opened the possibility of patient-specific modeling to aid clinicians during diagnosis, treatment, and monitoring. One example is the modeling of blood flow for surgical planning, where modeling can help predict the prognosis. Computational analysis is used to extract hemodynamic information about the case; however, these methods are sensitive to assumptions on blood properties, boundary conditions, and appropriate geometry accuracy. When available, experimental measurements can be used to validate the results and, among the modalities, ultrasound-based methods are suitable due to their relative low cost and non-invasiveness. This work proposes a procedure to create accurate patient-specific silicone replicas of blood vessels and a power Doppler compatible experimental setup able to simulate and measure realistic flow conditions. The assessment of silicone model geometry shows small discrepancies between these and the target geometries (median of surface error lies within 57 μm and 82 μm). Power Doppler measurements were compared against computational fluid dynamics results, showing discrepancies within 10% near the wall. The experimental approach offers a setup to quantify flow in in vitro systems and provide more accurate results where other techniques (e.g., particle image velocimetry and particle tracking velocimetry) have shown limitations due to the interference of the interface. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/139642 Narata, Ana Paula; Silva de Moura, Fernando; Patat, Fréderic; Marzo, Alberto; Larrabide, Ignacio; et al.; A clinically aligned experimental approach for quantitative characterization of patient-specific cardiovascular models; American Institute of Physics; AIP Advances; 10; 4; 4-2020; 1-10 2158-3226 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/139642 |
identifier_str_mv |
Narata, Ana Paula; Silva de Moura, Fernando; Patat, Fréderic; Marzo, Alberto; Larrabide, Ignacio; et al.; A clinically aligned experimental approach for quantitative characterization of patient-specific cardiovascular models; American Institute of Physics; AIP Advances; 10; 4; 4-2020; 1-10 2158-3226 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1063/1.5141350 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Institute of Physics |
publisher.none.fl_str_mv |
American Institute of Physics |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614368161955840 |
score |
13.070432 |