Comparison of Ground-Based, Unmanned Aerial Vehicles and Satellite Remote Sensing Technologies for Monitoring Pasture Biomass on Dairy Farms

Autores
Gargiulo, Juan; Lyons, Nicolas; Masía, Fernando; Beale, Peter; Insua, Juan Ramón; Correa Luna, Martín; Garcia, Sergio C.
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Systematic measurement of pasture biomass (kg DM/ha) is crucial for optimising pasture utilisation and increasing dairy farm profitability. On-farm pasture monitoring can be conducted using various sensors, but calibrations are necessary to convert the measured variable into pasturebiomass. In this study, we conducted three experiments in New South Wales (Australia) to evaluate the use of the rising plate meter (RPM), pasture reader (PR), unmanned aerial vehicles (UAV) and satellites as pasture monitoring tools. We tested various calibration methods that can improve the accuracy of the estimations and be implemented more easily on-farm. The results indicate that UAV and satellite-derived reflectance indices (e.g., Normalised Difference Vegetation Index) can be indirectly calibrated with height measurements obtained from an RPM or PR. Height measurements can be then converted into pasture biomass ideally by conducting site-specific sporadic calibrations cuts. For satellites, using the average of the entire paddock, root mean square error (RMSE) = 226 kg DM/ha for kikuyu (Pennisetum clandestinum Hochst. ex Chiov) and 347 kg DM/ha for ryegrass (Lolium multiflorum L.) is as effective as but easier than matching NDVI pixels with height measurement using a Global Navigation Satellite System (RMSE = 227 kg DM/ha for kikuyu and 406 kg DM/ha for ryegrass). For situations where no satellite images are available for the same date, the average of all images available within a range of up to four days from the day ground measurements were taken could be used (RMSE = 225 kg DM/ha for kikuyu and 402 kg DM/ha for ryegrass). These methodologies aim to develop more practical and easier-to-implement calibrations to improve the accuracy of the predictive models in commercial farms. However, more research is still needed to test these hypotheses under extended periods, locations, and pasture species.
Fil: Gargiulo, Juan. University Of Sidney. Faculty Of Science; Australia
Fil: Lyons, Nicolas. No especifíca;
Fil: Masía, Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias; Argentina
Fil: Beale, Peter. No especifíca;
Fil: Insua, Juan Ramón. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible - Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Sur. Estación Experimental Agropecuaria Balcarce. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible; Argentina
Fil: Correa Luna, Martín. University Of Sidney. Faculty Of Science; Australia
Fil: Garcia, Sergio C.. University Of Sidney. Faculty Of Science; Australia
Materia
AUTOMATION
PRODUCTIVITY
CALIBRATION
AUSTRALIA
GRAZING MANAGEMENT
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/234685

id CONICETDig_4bc7f0bafa0e1ed391273098b28e755a
oai_identifier_str oai:ri.conicet.gov.ar:11336/234685
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Comparison of Ground-Based, Unmanned Aerial Vehicles and Satellite Remote Sensing Technologies for Monitoring Pasture Biomass on Dairy FarmsGargiulo, JuanLyons, NicolasMasía, FernandoBeale, PeterInsua, Juan RamónCorrea Luna, MartínGarcia, Sergio C.AUTOMATIONPRODUCTIVITYCALIBRATIONAUSTRALIAGRAZING MANAGEMENThttps://purl.org/becyt/ford/4.2https://purl.org/becyt/ford/4Systematic measurement of pasture biomass (kg DM/ha) is crucial for optimising pasture utilisation and increasing dairy farm profitability. On-farm pasture monitoring can be conducted using various sensors, but calibrations are necessary to convert the measured variable into pasturebiomass. In this study, we conducted three experiments in New South Wales (Australia) to evaluate the use of the rising plate meter (RPM), pasture reader (PR), unmanned aerial vehicles (UAV) and satellites as pasture monitoring tools. We tested various calibration methods that can improve the accuracy of the estimations and be implemented more easily on-farm. The results indicate that UAV and satellite-derived reflectance indices (e.g., Normalised Difference Vegetation Index) can be indirectly calibrated with height measurements obtained from an RPM or PR. Height measurements can be then converted into pasture biomass ideally by conducting site-specific sporadic calibrations cuts. For satellites, using the average of the entire paddock, root mean square error (RMSE) = 226 kg DM/ha for kikuyu (Pennisetum clandestinum Hochst. ex Chiov) and 347 kg DM/ha for ryegrass (Lolium multiflorum L.) is as effective as but easier than matching NDVI pixels with height measurement using a Global Navigation Satellite System (RMSE = 227 kg DM/ha for kikuyu and 406 kg DM/ha for ryegrass). For situations where no satellite images are available for the same date, the average of all images available within a range of up to four days from the day ground measurements were taken could be used (RMSE = 225 kg DM/ha for kikuyu and 402 kg DM/ha for ryegrass). These methodologies aim to develop more practical and easier-to-implement calibrations to improve the accuracy of the predictive models in commercial farms. However, more research is still needed to test these hypotheses under extended periods, locations, and pasture species.Fil: Gargiulo, Juan. University Of Sidney. Faculty Of Science; AustraliaFil: Lyons, Nicolas. No especifíca;Fil: Masía, Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias; ArgentinaFil: Beale, Peter. No especifíca;Fil: Insua, Juan Ramón. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible - Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Sur. Estación Experimental Agropecuaria Balcarce. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible; ArgentinaFil: Correa Luna, Martín. University Of Sidney. Faculty Of Science; AustraliaFil: Garcia, Sergio C.. University Of Sidney. Faculty Of Science; AustraliaMultidisciplinary Digital Publishing Institute2023-05-25info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/234685Gargiulo, Juan; Lyons, Nicolas; Masía, Fernando; Beale, Peter; Insua, Juan Ramón; et al.; Comparison of Ground-Based, Unmanned Aerial Vehicles and Satellite Remote Sensing Technologies for Monitoring Pasture Biomass on Dairy Farms; Multidisciplinary Digital Publishing Institute; Remote Sensing; 15; 11; 25-5-2023; 1-172072-4292CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2072-4292/15/11/2752info:eu-repo/semantics/altIdentifier/doi/10.3390/rs15112752info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:13:50Zoai:ri.conicet.gov.ar:11336/234685instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:13:50.27CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Comparison of Ground-Based, Unmanned Aerial Vehicles and Satellite Remote Sensing Technologies for Monitoring Pasture Biomass on Dairy Farms
title Comparison of Ground-Based, Unmanned Aerial Vehicles and Satellite Remote Sensing Technologies for Monitoring Pasture Biomass on Dairy Farms
spellingShingle Comparison of Ground-Based, Unmanned Aerial Vehicles and Satellite Remote Sensing Technologies for Monitoring Pasture Biomass on Dairy Farms
Gargiulo, Juan
AUTOMATION
PRODUCTIVITY
CALIBRATION
AUSTRALIA
GRAZING MANAGEMENT
title_short Comparison of Ground-Based, Unmanned Aerial Vehicles and Satellite Remote Sensing Technologies for Monitoring Pasture Biomass on Dairy Farms
title_full Comparison of Ground-Based, Unmanned Aerial Vehicles and Satellite Remote Sensing Technologies for Monitoring Pasture Biomass on Dairy Farms
title_fullStr Comparison of Ground-Based, Unmanned Aerial Vehicles and Satellite Remote Sensing Technologies for Monitoring Pasture Biomass on Dairy Farms
title_full_unstemmed Comparison of Ground-Based, Unmanned Aerial Vehicles and Satellite Remote Sensing Technologies for Monitoring Pasture Biomass on Dairy Farms
title_sort Comparison of Ground-Based, Unmanned Aerial Vehicles and Satellite Remote Sensing Technologies for Monitoring Pasture Biomass on Dairy Farms
dc.creator.none.fl_str_mv Gargiulo, Juan
Lyons, Nicolas
Masía, Fernando
Beale, Peter
Insua, Juan Ramón
Correa Luna, Martín
Garcia, Sergio C.
author Gargiulo, Juan
author_facet Gargiulo, Juan
Lyons, Nicolas
Masía, Fernando
Beale, Peter
Insua, Juan Ramón
Correa Luna, Martín
Garcia, Sergio C.
author_role author
author2 Lyons, Nicolas
Masía, Fernando
Beale, Peter
Insua, Juan Ramón
Correa Luna, Martín
Garcia, Sergio C.
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv AUTOMATION
PRODUCTIVITY
CALIBRATION
AUSTRALIA
GRAZING MANAGEMENT
topic AUTOMATION
PRODUCTIVITY
CALIBRATION
AUSTRALIA
GRAZING MANAGEMENT
purl_subject.fl_str_mv https://purl.org/becyt/ford/4.2
https://purl.org/becyt/ford/4
dc.description.none.fl_txt_mv Systematic measurement of pasture biomass (kg DM/ha) is crucial for optimising pasture utilisation and increasing dairy farm profitability. On-farm pasture monitoring can be conducted using various sensors, but calibrations are necessary to convert the measured variable into pasturebiomass. In this study, we conducted three experiments in New South Wales (Australia) to evaluate the use of the rising plate meter (RPM), pasture reader (PR), unmanned aerial vehicles (UAV) and satellites as pasture monitoring tools. We tested various calibration methods that can improve the accuracy of the estimations and be implemented more easily on-farm. The results indicate that UAV and satellite-derived reflectance indices (e.g., Normalised Difference Vegetation Index) can be indirectly calibrated with height measurements obtained from an RPM or PR. Height measurements can be then converted into pasture biomass ideally by conducting site-specific sporadic calibrations cuts. For satellites, using the average of the entire paddock, root mean square error (RMSE) = 226 kg DM/ha for kikuyu (Pennisetum clandestinum Hochst. ex Chiov) and 347 kg DM/ha for ryegrass (Lolium multiflorum L.) is as effective as but easier than matching NDVI pixels with height measurement using a Global Navigation Satellite System (RMSE = 227 kg DM/ha for kikuyu and 406 kg DM/ha for ryegrass). For situations where no satellite images are available for the same date, the average of all images available within a range of up to four days from the day ground measurements were taken could be used (RMSE = 225 kg DM/ha for kikuyu and 402 kg DM/ha for ryegrass). These methodologies aim to develop more practical and easier-to-implement calibrations to improve the accuracy of the predictive models in commercial farms. However, more research is still needed to test these hypotheses under extended periods, locations, and pasture species.
Fil: Gargiulo, Juan. University Of Sidney. Faculty Of Science; Australia
Fil: Lyons, Nicolas. No especifíca;
Fil: Masía, Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias; Argentina
Fil: Beale, Peter. No especifíca;
Fil: Insua, Juan Ramón. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible - Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Sur. Estación Experimental Agropecuaria Balcarce. Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible; Argentina
Fil: Correa Luna, Martín. University Of Sidney. Faculty Of Science; Australia
Fil: Garcia, Sergio C.. University Of Sidney. Faculty Of Science; Australia
description Systematic measurement of pasture biomass (kg DM/ha) is crucial for optimising pasture utilisation and increasing dairy farm profitability. On-farm pasture monitoring can be conducted using various sensors, but calibrations are necessary to convert the measured variable into pasturebiomass. In this study, we conducted three experiments in New South Wales (Australia) to evaluate the use of the rising plate meter (RPM), pasture reader (PR), unmanned aerial vehicles (UAV) and satellites as pasture monitoring tools. We tested various calibration methods that can improve the accuracy of the estimations and be implemented more easily on-farm. The results indicate that UAV and satellite-derived reflectance indices (e.g., Normalised Difference Vegetation Index) can be indirectly calibrated with height measurements obtained from an RPM or PR. Height measurements can be then converted into pasture biomass ideally by conducting site-specific sporadic calibrations cuts. For satellites, using the average of the entire paddock, root mean square error (RMSE) = 226 kg DM/ha for kikuyu (Pennisetum clandestinum Hochst. ex Chiov) and 347 kg DM/ha for ryegrass (Lolium multiflorum L.) is as effective as but easier than matching NDVI pixels with height measurement using a Global Navigation Satellite System (RMSE = 227 kg DM/ha for kikuyu and 406 kg DM/ha for ryegrass). For situations where no satellite images are available for the same date, the average of all images available within a range of up to four days from the day ground measurements were taken could be used (RMSE = 225 kg DM/ha for kikuyu and 402 kg DM/ha for ryegrass). These methodologies aim to develop more practical and easier-to-implement calibrations to improve the accuracy of the predictive models in commercial farms. However, more research is still needed to test these hypotheses under extended periods, locations, and pasture species.
publishDate 2023
dc.date.none.fl_str_mv 2023-05-25
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/234685
Gargiulo, Juan; Lyons, Nicolas; Masía, Fernando; Beale, Peter; Insua, Juan Ramón; et al.; Comparison of Ground-Based, Unmanned Aerial Vehicles and Satellite Remote Sensing Technologies for Monitoring Pasture Biomass on Dairy Farms; Multidisciplinary Digital Publishing Institute; Remote Sensing; 15; 11; 25-5-2023; 1-17
2072-4292
CONICET Digital
CONICET
url http://hdl.handle.net/11336/234685
identifier_str_mv Gargiulo, Juan; Lyons, Nicolas; Masía, Fernando; Beale, Peter; Insua, Juan Ramón; et al.; Comparison of Ground-Based, Unmanned Aerial Vehicles and Satellite Remote Sensing Technologies for Monitoring Pasture Biomass on Dairy Farms; Multidisciplinary Digital Publishing Institute; Remote Sensing; 15; 11; 25-5-2023; 1-17
2072-4292
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2072-4292/15/11/2752
info:eu-repo/semantics/altIdentifier/doi/10.3390/rs15112752
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Multidisciplinary Digital Publishing Institute
publisher.none.fl_str_mv Multidisciplinary Digital Publishing Institute
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614059259854848
score 13.070432