Calibration of an Unmanned Aerial Vehicle for Prediction of Herbage Mass in Temperate Pasture

Autores
Laplacette, Celina María; Berone, Germán Darío; Utsumi Molle, Santiago Alfredo; Insua, Juan Ramón
Año de publicación
2025
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Accurate estimation of herbage mass is crucial for managing pastoral livestocksystems. The Normalized Difference Vegetation Index (NDVI) from Unmanned AerialVehicle (UAV) sensors shows promise for high-resolution estimations of pasture herbagemass, but it is still unknown how this method differs among forage species, seasons, andpasture management practices. A commercial sensor was calibrated to predict herbagemass using NDVI. Additionally, the effect of different forage species, days of regrowth, andnitrogen (N) status on the relationship between NDVI and herbage mass was evaluated.Two pastures of tall wheatgrass (Thinopyrum ponticum) and tall fescue (Festuca arundinacea),divided into 30 and 72 plots, respectively, were assessed during spring and autumn regrowthover two years in Balcarce, Argentina. Doses of 0, 50, and 100 kg N ha−1 wereapplied to tall wheatgrass, and 0, 50, 100, 200, 400, and 600 kg N ha−1 were applied to tallfescue to create variability in herbage mass and N status. Exponential regression models ofherbage mass (y) fitted against NDVI (x) showed an average R2 of 0.83 ± 0.04 and a meanabsolute error of 170 ± 60 kg DM ha−1. The relationship between NDVI and herbage massdiffered (p ≤ 0.05) between species, seasons, and regrowth stage, but was not influenced byN status (p > 0.05). Results suggest that accurate predictions of herbage mass using NDVImeasurements by an UAV require frequent model recalibrations to account for observeddifferences among forage species, days of regrowth, and years.
Fil: Laplacette, Celina María. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Sur. Estación Experimental Agropecuaria Balcarce; Argentina
Fil: Berone, Germán Darío. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Mar del Plata. Instituto de Innovación Para la Producción Agropecuaria y El Desarrollo Sostenible. - Instituto Nacional de Tecnologia Agropecuaria. Centro Regional Buenos Aires Sur. Estacion Experimental Agropecuaria Balcarce. Instituto de Innovación Para la Producción Agropecuaria y El Desarrollo Sostenible.; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina
Fil: Utsumi Molle, Santiago Alfredo. New Mexico State University.; Estados Unidos
Fil: Insua, Juan Ramón. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina
Materia
PASTURE MONITORING
HERBAGE MASS
NDVI
REMOTE SENSING
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/266902

id CONICETDig_4b7b4e2b7875c122441727d76108d807
oai_identifier_str oai:ri.conicet.gov.ar:11336/266902
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Calibration of an Unmanned Aerial Vehicle for Prediction of Herbage Mass in Temperate PastureLaplacette, Celina MaríaBerone, Germán DaríoUtsumi Molle, Santiago AlfredoInsua, Juan RamónPASTURE MONITORINGHERBAGE MASSNDVIREMOTE SENSINGhttps://purl.org/becyt/ford/4.2https://purl.org/becyt/ford/4Accurate estimation of herbage mass is crucial for managing pastoral livestocksystems. The Normalized Difference Vegetation Index (NDVI) from Unmanned AerialVehicle (UAV) sensors shows promise for high-resolution estimations of pasture herbagemass, but it is still unknown how this method differs among forage species, seasons, andpasture management practices. A commercial sensor was calibrated to predict herbagemass using NDVI. Additionally, the effect of different forage species, days of regrowth, andnitrogen (N) status on the relationship between NDVI and herbage mass was evaluated.Two pastures of tall wheatgrass (Thinopyrum ponticum) and tall fescue (Festuca arundinacea),divided into 30 and 72 plots, respectively, were assessed during spring and autumn regrowthover two years in Balcarce, Argentina. Doses of 0, 50, and 100 kg N ha−1 wereapplied to tall wheatgrass, and 0, 50, 100, 200, 400, and 600 kg N ha−1 were applied to tallfescue to create variability in herbage mass and N status. Exponential regression models ofherbage mass (y) fitted against NDVI (x) showed an average R2 of 0.83 ± 0.04 and a meanabsolute error of 170 ± 60 kg DM ha−1. The relationship between NDVI and herbage massdiffered (p ≤ 0.05) between species, seasons, and regrowth stage, but was not influenced byN status (p > 0.05). Results suggest that accurate predictions of herbage mass using NDVImeasurements by an UAV require frequent model recalibrations to account for observeddifferences among forage species, days of regrowth, and years.Fil: Laplacette, Celina María. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Sur. Estación Experimental Agropecuaria Balcarce; ArgentinaFil: Berone, Germán Darío. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Mar del Plata. Instituto de Innovación Para la Producción Agropecuaria y El Desarrollo Sostenible. - Instituto Nacional de Tecnologia Agropecuaria. Centro Regional Buenos Aires Sur. Estacion Experimental Agropecuaria Balcarce. Instituto de Innovación Para la Producción Agropecuaria y El Desarrollo Sostenible.; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; ArgentinaFil: Utsumi Molle, Santiago Alfredo. New Mexico State University.; Estados UnidosFil: Insua, Juan Ramón. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; ArgentinaMultidisciplinary Digital Publishing Institute2025-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/266902Laplacette, Celina María; Berone, Germán Darío; Utsumi Molle, Santiago Alfredo; Insua, Juan Ramón; Calibration of an Unmanned Aerial Vehicle for Prediction of Herbage Mass in Temperate Pasture; Multidisciplinary Digital Publishing Institute; Agriculture; 15; 5; 2-2025; 1-172077-0472CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2077-0472/15/5/492info:eu-repo/semantics/altIdentifier/doi/10.3390/agriculture15050492info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:17:17Zoai:ri.conicet.gov.ar:11336/266902instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:17:18.17CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Calibration of an Unmanned Aerial Vehicle for Prediction of Herbage Mass in Temperate Pasture
title Calibration of an Unmanned Aerial Vehicle for Prediction of Herbage Mass in Temperate Pasture
spellingShingle Calibration of an Unmanned Aerial Vehicle for Prediction of Herbage Mass in Temperate Pasture
Laplacette, Celina María
PASTURE MONITORING
HERBAGE MASS
NDVI
REMOTE SENSING
title_short Calibration of an Unmanned Aerial Vehicle for Prediction of Herbage Mass in Temperate Pasture
title_full Calibration of an Unmanned Aerial Vehicle for Prediction of Herbage Mass in Temperate Pasture
title_fullStr Calibration of an Unmanned Aerial Vehicle for Prediction of Herbage Mass in Temperate Pasture
title_full_unstemmed Calibration of an Unmanned Aerial Vehicle for Prediction of Herbage Mass in Temperate Pasture
title_sort Calibration of an Unmanned Aerial Vehicle for Prediction of Herbage Mass in Temperate Pasture
dc.creator.none.fl_str_mv Laplacette, Celina María
Berone, Germán Darío
Utsumi Molle, Santiago Alfredo
Insua, Juan Ramón
author Laplacette, Celina María
author_facet Laplacette, Celina María
Berone, Germán Darío
Utsumi Molle, Santiago Alfredo
Insua, Juan Ramón
author_role author
author2 Berone, Germán Darío
Utsumi Molle, Santiago Alfredo
Insua, Juan Ramón
author2_role author
author
author
dc.subject.none.fl_str_mv PASTURE MONITORING
HERBAGE MASS
NDVI
REMOTE SENSING
topic PASTURE MONITORING
HERBAGE MASS
NDVI
REMOTE SENSING
purl_subject.fl_str_mv https://purl.org/becyt/ford/4.2
https://purl.org/becyt/ford/4
dc.description.none.fl_txt_mv Accurate estimation of herbage mass is crucial for managing pastoral livestocksystems. The Normalized Difference Vegetation Index (NDVI) from Unmanned AerialVehicle (UAV) sensors shows promise for high-resolution estimations of pasture herbagemass, but it is still unknown how this method differs among forage species, seasons, andpasture management practices. A commercial sensor was calibrated to predict herbagemass using NDVI. Additionally, the effect of different forage species, days of regrowth, andnitrogen (N) status on the relationship between NDVI and herbage mass was evaluated.Two pastures of tall wheatgrass (Thinopyrum ponticum) and tall fescue (Festuca arundinacea),divided into 30 and 72 plots, respectively, were assessed during spring and autumn regrowthover two years in Balcarce, Argentina. Doses of 0, 50, and 100 kg N ha−1 wereapplied to tall wheatgrass, and 0, 50, 100, 200, 400, and 600 kg N ha−1 were applied to tallfescue to create variability in herbage mass and N status. Exponential regression models ofherbage mass (y) fitted against NDVI (x) showed an average R2 of 0.83 ± 0.04 and a meanabsolute error of 170 ± 60 kg DM ha−1. The relationship between NDVI and herbage massdiffered (p ≤ 0.05) between species, seasons, and regrowth stage, but was not influenced byN status (p > 0.05). Results suggest that accurate predictions of herbage mass using NDVImeasurements by an UAV require frequent model recalibrations to account for observeddifferences among forage species, days of regrowth, and years.
Fil: Laplacette, Celina María. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Sur. Estación Experimental Agropecuaria Balcarce; Argentina
Fil: Berone, Germán Darío. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Mar del Plata. Instituto de Innovación Para la Producción Agropecuaria y El Desarrollo Sostenible. - Instituto Nacional de Tecnologia Agropecuaria. Centro Regional Buenos Aires Sur. Estacion Experimental Agropecuaria Balcarce. Instituto de Innovación Para la Producción Agropecuaria y El Desarrollo Sostenible.; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina
Fil: Utsumi Molle, Santiago Alfredo. New Mexico State University.; Estados Unidos
Fil: Insua, Juan Ramón. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina
description Accurate estimation of herbage mass is crucial for managing pastoral livestocksystems. The Normalized Difference Vegetation Index (NDVI) from Unmanned AerialVehicle (UAV) sensors shows promise for high-resolution estimations of pasture herbagemass, but it is still unknown how this method differs among forage species, seasons, andpasture management practices. A commercial sensor was calibrated to predict herbagemass using NDVI. Additionally, the effect of different forage species, days of regrowth, andnitrogen (N) status on the relationship between NDVI and herbage mass was evaluated.Two pastures of tall wheatgrass (Thinopyrum ponticum) and tall fescue (Festuca arundinacea),divided into 30 and 72 plots, respectively, were assessed during spring and autumn regrowthover two years in Balcarce, Argentina. Doses of 0, 50, and 100 kg N ha−1 wereapplied to tall wheatgrass, and 0, 50, 100, 200, 400, and 600 kg N ha−1 were applied to tallfescue to create variability in herbage mass and N status. Exponential regression models ofherbage mass (y) fitted against NDVI (x) showed an average R2 of 0.83 ± 0.04 and a meanabsolute error of 170 ± 60 kg DM ha−1. The relationship between NDVI and herbage massdiffered (p ≤ 0.05) between species, seasons, and regrowth stage, but was not influenced byN status (p > 0.05). Results suggest that accurate predictions of herbage mass using NDVImeasurements by an UAV require frequent model recalibrations to account for observeddifferences among forage species, days of regrowth, and years.
publishDate 2025
dc.date.none.fl_str_mv 2025-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/266902
Laplacette, Celina María; Berone, Germán Darío; Utsumi Molle, Santiago Alfredo; Insua, Juan Ramón; Calibration of an Unmanned Aerial Vehicle for Prediction of Herbage Mass in Temperate Pasture; Multidisciplinary Digital Publishing Institute; Agriculture; 15; 5; 2-2025; 1-17
2077-0472
CONICET Digital
CONICET
url http://hdl.handle.net/11336/266902
identifier_str_mv Laplacette, Celina María; Berone, Germán Darío; Utsumi Molle, Santiago Alfredo; Insua, Juan Ramón; Calibration of an Unmanned Aerial Vehicle for Prediction of Herbage Mass in Temperate Pasture; Multidisciplinary Digital Publishing Institute; Agriculture; 15; 5; 2-2025; 1-17
2077-0472
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2077-0472/15/5/492
info:eu-repo/semantics/altIdentifier/doi/10.3390/agriculture15050492
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Multidisciplinary Digital Publishing Institute
publisher.none.fl_str_mv Multidisciplinary Digital Publishing Institute
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614124683657216
score 13.070432