COVID-19 pneumonia accurately detected on chest radiographs with artificial intelligence
- Autores
- Dorr, Francisco; Chaves, Hernán; Serra, María Mercedes; Ramirez, Andres; Costa, Martín Elías; Seia, Joaquín Oscar; Cejas, Claudia; Castro, Marcelo; Eyheremendy, Eduardo; Fernández Slezak, Diego; Farez, Mauricio Franco
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- PurposeTo investigate the diagnostic performance of an Artificial Intelligence (AI) system for detection of COVID-19 in chest radiographs (CXR), and compare results to those of physicians working alone, or with AI support.Materials and methodsAn AI system was fine-tuned to discriminate confirmed COVID-19 pneumonia, from other viral and bacterial pneumonia and non-pneumonia patients and used to review 302 CXR images from adult patients retrospectively sourced from nine different databases. Fifty-four physicians blind to diagnosis, were invited to interpret images under identical conditions in a test set, and randomly assigned either to receive or not receive support from the AI system. Comparisons were then made between diagnostic performance of physicians working with and without AI support. AI system performance was evaluated using the area under the receiver operating characteristic (AUROC), and sensitivity and specificity of physician performance compared to that of the AI system.ResultsDiscrimination by the AI system of COVID-19 pneumonia showed an AUROC curve of 0.96 in the validation and 0.83 in the external test set, respectively. The AI system outperformed physicians in the AUROC overall (70% increase in sensitivity and 1% increase in specificity, p < 0.0001). When working with AI support, physicians increased their diagnostic sensitivity from 47% to 61% (p < 0.001), although specificity decreased from 79% to 75% (p = 0.007).ConclusionsOur results suggest interpreting chest radiographs (CXR) supported by AI, increases physician diagnostic sensitivity for COVID-19 detection. This approach involving a human-machine partnership may help expedite triaging efforts and improve resource allocation in the current crisis.
Fil: Dorr, Francisco. Entelai; Argentina
Fil: Chaves, Hernán. Entelai; Argentina. Fundación P/la Lucha C/enferm. neurológicas Infancia. Instituto de Neurociencias. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Neurociencias; Argentina
Fil: Serra, María Mercedes. Entelai; Argentina. Fundación P/la Lucha C/enferm. neurológicas Infancia. Instituto de Neurociencias. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Neurociencias; Argentina
Fil: Ramirez, Andres. Entelai; Argentina
Fil: Costa, Martín Elías. Entelai; Argentina
Fil: Seia, Joaquín Oscar. Entelai; Argentina
Fil: Cejas, Claudia. Fundación P/la Lucha C/enferm. neurológicas Infancia. Instituto de Neurociencias. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Neurociencias; Argentina
Fil: Castro, Marcelo. Departamento de Diagnóstico por Imágenes, Clínica Indisa ; Chile
Fil: Eyheremendy, Eduardo. Hospital Alemán; Argentina
Fil: Fernández Slezak, Diego. Entelai; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
Fil: Farez, Mauricio Franco. Entelai; Argentina. Fundación P/la Lucha C/enferm. neurológicas Infancia. Instituto de Neurociencias. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Neurociencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
DEEP LEARNING
COVID
THORAX X-RAY
COVID-19 - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/129095
Ver los metadatos del registro completo
id |
CONICETDig_4b7e68a04435fad95a26d14a1dab48b1 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/129095 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
COVID-19 pneumonia accurately detected on chest radiographs with artificial intelligenceDorr, FranciscoChaves, HernánSerra, María MercedesRamirez, AndresCosta, Martín ElíasSeia, Joaquín OscarCejas, ClaudiaCastro, MarceloEyheremendy, EduardoFernández Slezak, DiegoFarez, Mauricio FrancoDEEP LEARNINGCOVIDTHORAX X-RAYCOVID-19https://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1PurposeTo investigate the diagnostic performance of an Artificial Intelligence (AI) system for detection of COVID-19 in chest radiographs (CXR), and compare results to those of physicians working alone, or with AI support.Materials and methodsAn AI system was fine-tuned to discriminate confirmed COVID-19 pneumonia, from other viral and bacterial pneumonia and non-pneumonia patients and used to review 302 CXR images from adult patients retrospectively sourced from nine different databases. Fifty-four physicians blind to diagnosis, were invited to interpret images under identical conditions in a test set, and randomly assigned either to receive or not receive support from the AI system. Comparisons were then made between diagnostic performance of physicians working with and without AI support. AI system performance was evaluated using the area under the receiver operating characteristic (AUROC), and sensitivity and specificity of physician performance compared to that of the AI system.ResultsDiscrimination by the AI system of COVID-19 pneumonia showed an AUROC curve of 0.96 in the validation and 0.83 in the external test set, respectively. The AI system outperformed physicians in the AUROC overall (70% increase in sensitivity and 1% increase in specificity, p < 0.0001). When working with AI support, physicians increased their diagnostic sensitivity from 47% to 61% (p < 0.001), although specificity decreased from 79% to 75% (p = 0.007).ConclusionsOur results suggest interpreting chest radiographs (CXR) supported by AI, increases physician diagnostic sensitivity for COVID-19 detection. This approach involving a human-machine partnership may help expedite triaging efforts and improve resource allocation in the current crisis.Fil: Dorr, Francisco. Entelai; ArgentinaFil: Chaves, Hernán. Entelai; Argentina. Fundación P/la Lucha C/enferm. neurológicas Infancia. Instituto de Neurociencias. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Neurociencias; ArgentinaFil: Serra, María Mercedes. Entelai; Argentina. Fundación P/la Lucha C/enferm. neurológicas Infancia. Instituto de Neurociencias. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Neurociencias; ArgentinaFil: Ramirez, Andres. Entelai; ArgentinaFil: Costa, Martín Elías. Entelai; ArgentinaFil: Seia, Joaquín Oscar. Entelai; ArgentinaFil: Cejas, Claudia. Fundación P/la Lucha C/enferm. neurológicas Infancia. Instituto de Neurociencias. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Neurociencias; ArgentinaFil: Castro, Marcelo. Departamento de Diagnóstico por Imágenes, Clínica Indisa ; ChileFil: Eyheremendy, Eduardo. Hospital Alemán; ArgentinaFil: Fernández Slezak, Diego. Entelai; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; ArgentinaFil: Farez, Mauricio Franco. Entelai; Argentina. Fundación P/la Lucha C/enferm. neurológicas Infancia. Instituto de Neurociencias. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Neurociencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier2020-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/129095Dorr, Francisco; Chaves, Hernán; Serra, María Mercedes; Ramirez, Andres; Costa, Martín Elías; et al.; COVID-19 pneumonia accurately detected on chest radiographs with artificial intelligence; Elsevier; Intelligence-Based Medicine; 3-4; 100014; 12-2020; 1-72666-5212CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S2666521220300144?via%3Dihubinfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.ibmed.2020.100014info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:38:36Zoai:ri.conicet.gov.ar:11336/129095instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:38:37.181CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
COVID-19 pneumonia accurately detected on chest radiographs with artificial intelligence |
title |
COVID-19 pneumonia accurately detected on chest radiographs with artificial intelligence |
spellingShingle |
COVID-19 pneumonia accurately detected on chest radiographs with artificial intelligence Dorr, Francisco DEEP LEARNING COVID THORAX X-RAY COVID-19 |
title_short |
COVID-19 pneumonia accurately detected on chest radiographs with artificial intelligence |
title_full |
COVID-19 pneumonia accurately detected on chest radiographs with artificial intelligence |
title_fullStr |
COVID-19 pneumonia accurately detected on chest radiographs with artificial intelligence |
title_full_unstemmed |
COVID-19 pneumonia accurately detected on chest radiographs with artificial intelligence |
title_sort |
COVID-19 pneumonia accurately detected on chest radiographs with artificial intelligence |
dc.creator.none.fl_str_mv |
Dorr, Francisco Chaves, Hernán Serra, María Mercedes Ramirez, Andres Costa, Martín Elías Seia, Joaquín Oscar Cejas, Claudia Castro, Marcelo Eyheremendy, Eduardo Fernández Slezak, Diego Farez, Mauricio Franco |
author |
Dorr, Francisco |
author_facet |
Dorr, Francisco Chaves, Hernán Serra, María Mercedes Ramirez, Andres Costa, Martín Elías Seia, Joaquín Oscar Cejas, Claudia Castro, Marcelo Eyheremendy, Eduardo Fernández Slezak, Diego Farez, Mauricio Franco |
author_role |
author |
author2 |
Chaves, Hernán Serra, María Mercedes Ramirez, Andres Costa, Martín Elías Seia, Joaquín Oscar Cejas, Claudia Castro, Marcelo Eyheremendy, Eduardo Fernández Slezak, Diego Farez, Mauricio Franco |
author2_role |
author author author author author author author author author author |
dc.subject.none.fl_str_mv |
DEEP LEARNING COVID THORAX X-RAY COVID-19 |
topic |
DEEP LEARNING COVID THORAX X-RAY COVID-19 |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
PurposeTo investigate the diagnostic performance of an Artificial Intelligence (AI) system for detection of COVID-19 in chest radiographs (CXR), and compare results to those of physicians working alone, or with AI support.Materials and methodsAn AI system was fine-tuned to discriminate confirmed COVID-19 pneumonia, from other viral and bacterial pneumonia and non-pneumonia patients and used to review 302 CXR images from adult patients retrospectively sourced from nine different databases. Fifty-four physicians blind to diagnosis, were invited to interpret images under identical conditions in a test set, and randomly assigned either to receive or not receive support from the AI system. Comparisons were then made between diagnostic performance of physicians working with and without AI support. AI system performance was evaluated using the area under the receiver operating characteristic (AUROC), and sensitivity and specificity of physician performance compared to that of the AI system.ResultsDiscrimination by the AI system of COVID-19 pneumonia showed an AUROC curve of 0.96 in the validation and 0.83 in the external test set, respectively. The AI system outperformed physicians in the AUROC overall (70% increase in sensitivity and 1% increase in specificity, p < 0.0001). When working with AI support, physicians increased their diagnostic sensitivity from 47% to 61% (p < 0.001), although specificity decreased from 79% to 75% (p = 0.007).ConclusionsOur results suggest interpreting chest radiographs (CXR) supported by AI, increases physician diagnostic sensitivity for COVID-19 detection. This approach involving a human-machine partnership may help expedite triaging efforts and improve resource allocation in the current crisis. Fil: Dorr, Francisco. Entelai; Argentina Fil: Chaves, Hernán. Entelai; Argentina. Fundación P/la Lucha C/enferm. neurológicas Infancia. Instituto de Neurociencias. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Neurociencias; Argentina Fil: Serra, María Mercedes. Entelai; Argentina. Fundación P/la Lucha C/enferm. neurológicas Infancia. Instituto de Neurociencias. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Neurociencias; Argentina Fil: Ramirez, Andres. Entelai; Argentina Fil: Costa, Martín Elías. Entelai; Argentina Fil: Seia, Joaquín Oscar. Entelai; Argentina Fil: Cejas, Claudia. Fundación P/la Lucha C/enferm. neurológicas Infancia. Instituto de Neurociencias. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Neurociencias; Argentina Fil: Castro, Marcelo. Departamento de Diagnóstico por Imágenes, Clínica Indisa ; Chile Fil: Eyheremendy, Eduardo. Hospital Alemán; Argentina Fil: Fernández Slezak, Diego. Entelai; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina Fil: Farez, Mauricio Franco. Entelai; Argentina. Fundación P/la Lucha C/enferm. neurológicas Infancia. Instituto de Neurociencias. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Neurociencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
PurposeTo investigate the diagnostic performance of an Artificial Intelligence (AI) system for detection of COVID-19 in chest radiographs (CXR), and compare results to those of physicians working alone, or with AI support.Materials and methodsAn AI system was fine-tuned to discriminate confirmed COVID-19 pneumonia, from other viral and bacterial pneumonia and non-pneumonia patients and used to review 302 CXR images from adult patients retrospectively sourced from nine different databases. Fifty-four physicians blind to diagnosis, were invited to interpret images under identical conditions in a test set, and randomly assigned either to receive or not receive support from the AI system. Comparisons were then made between diagnostic performance of physicians working with and without AI support. AI system performance was evaluated using the area under the receiver operating characteristic (AUROC), and sensitivity and specificity of physician performance compared to that of the AI system.ResultsDiscrimination by the AI system of COVID-19 pneumonia showed an AUROC curve of 0.96 in the validation and 0.83 in the external test set, respectively. The AI system outperformed physicians in the AUROC overall (70% increase in sensitivity and 1% increase in specificity, p < 0.0001). When working with AI support, physicians increased their diagnostic sensitivity from 47% to 61% (p < 0.001), although specificity decreased from 79% to 75% (p = 0.007).ConclusionsOur results suggest interpreting chest radiographs (CXR) supported by AI, increases physician diagnostic sensitivity for COVID-19 detection. This approach involving a human-machine partnership may help expedite triaging efforts and improve resource allocation in the current crisis. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/129095 Dorr, Francisco; Chaves, Hernán; Serra, María Mercedes; Ramirez, Andres; Costa, Martín Elías; et al.; COVID-19 pneumonia accurately detected on chest radiographs with artificial intelligence; Elsevier; Intelligence-Based Medicine; 3-4; 100014; 12-2020; 1-7 2666-5212 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/129095 |
identifier_str_mv |
Dorr, Francisco; Chaves, Hernán; Serra, María Mercedes; Ramirez, Andres; Costa, Martín Elías; et al.; COVID-19 pneumonia accurately detected on chest radiographs with artificial intelligence; Elsevier; Intelligence-Based Medicine; 3-4; 100014; 12-2020; 1-7 2666-5212 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S2666521220300144?via%3Dihub info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ibmed.2020.100014 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613221018763264 |
score |
13.070432 |