COVID-XR: A Web Management Platform for Coronavirus Detection on X-ray Chest Images
- Autores
- Orozco, Carlos Ismael; Xamena, Eduardo; Martinez, Cristian Alejandro; Rodriguez, Diego Alejandro
- Año de publicación
- 2021
- Idioma
- español castellano
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- COVID-19 is an infectious disease caused by the SARS-CoV-2 virus. Its symptoms are similar to those of the common flu, including fever, cough, dyspnea, myalgia, and fatigue. Due to its rapid expansion globally, the World Health Organization (OMS) declared it a pandemic. The molecular test commonly used worldwide for direct detection of the virus is the RT-PCR test but it takes time to process and the materials used are scarce. In this work we propose: (a) The design and implementation of a deep neural network architecture for the detection of patients with COVID-19 using as input X-ray images of the chest; the architecture is made up of a feature extraction phase, that is, a pre-trained model VGG16 extracts the features of the image; then in the second phase, a multilayer neural network classifies into one of two particular classes (1: COVID, 0: NO COVID). (b) The implementation of a Web platform that allows interested people to use our architecture in a clear, simple and transparent way. The deep learning algorithm was implemented in Python with specific libraries for the design of neural networks, while the Web platform was implemented in PHP using the Laravel framework and MySQL database. We evaluate the performance of our proposal using the sensitivity, specificity and area under the curve (AUC) evaluation metrics, obtaining good results in very short computational times.
Fil: Orozco, Carlos Ismael. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Informática; Argentina
Fil: Xamena, Eduardo. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Informática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Martinez, Cristian Alejandro. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Informática; Argentina
Fil: Rodriguez, Diego Alejandro. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Informática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
DEEP LEARNING
X-RAY TEST
WEB PLATFORM
COVID-19 - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/137000
Ver los metadatos del registro completo
id |
CONICETDig_09251b10f3333ce2a6654805bcd3e0e4 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/137000 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
COVID-XR: A Web Management Platform for Coronavirus Detection on X-ray Chest ImagesOrozco, Carlos IsmaelXamena, EduardoMartinez, Cristian AlejandroRodriguez, Diego AlejandroDEEP LEARNINGX-RAY TESTWEB PLATFORMCOVID-19https://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1COVID-19 is an infectious disease caused by the SARS-CoV-2 virus. Its symptoms are similar to those of the common flu, including fever, cough, dyspnea, myalgia, and fatigue. Due to its rapid expansion globally, the World Health Organization (OMS) declared it a pandemic. The molecular test commonly used worldwide for direct detection of the virus is the RT-PCR test but it takes time to process and the materials used are scarce. In this work we propose: (a) The design and implementation of a deep neural network architecture for the detection of patients with COVID-19 using as input X-ray images of the chest; the architecture is made up of a feature extraction phase, that is, a pre-trained model VGG16 extracts the features of the image; then in the second phase, a multilayer neural network classifies into one of two particular classes (1: COVID, 0: NO COVID). (b) The implementation of a Web platform that allows interested people to use our architecture in a clear, simple and transparent way. The deep learning algorithm was implemented in Python with specific libraries for the design of neural networks, while the Web platform was implemented in PHP using the Laravel framework and MySQL database. We evaluate the performance of our proposal using the sensitivity, specificity and area under the curve (AUC) evaluation metrics, obtaining good results in very short computational times.Fil: Orozco, Carlos Ismael. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Informática; ArgentinaFil: Xamena, Eduardo. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Informática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Martinez, Cristian Alejandro. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Informática; ArgentinaFil: Rodriguez, Diego Alejandro. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Informática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaInstitute of Electrical and Electronics Engineers2021-06-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/137000Orozco, Carlos Ismael; Xamena, Eduardo; Martinez, Cristian Alejandro; Rodriguez, Diego Alejandro; COVID-XR: A Web Management Platform for Coronavirus Detection on X-ray Chest Images; Institute of Electrical and Electronics Engineers; IEEE Latin America Transactions; 19; 6; 8-6-2021; 1-81548-0992CONICET DigitalCONICETspainfo:eu-repo/semantics/altIdentifier/url/https://latamt.ieeer9.org/index.php/transactions/article/view/4402info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:20:33Zoai:ri.conicet.gov.ar:11336/137000instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:20:33.364CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
COVID-XR: A Web Management Platform for Coronavirus Detection on X-ray Chest Images |
title |
COVID-XR: A Web Management Platform for Coronavirus Detection on X-ray Chest Images |
spellingShingle |
COVID-XR: A Web Management Platform for Coronavirus Detection on X-ray Chest Images Orozco, Carlos Ismael DEEP LEARNING X-RAY TEST WEB PLATFORM COVID-19 |
title_short |
COVID-XR: A Web Management Platform for Coronavirus Detection on X-ray Chest Images |
title_full |
COVID-XR: A Web Management Platform for Coronavirus Detection on X-ray Chest Images |
title_fullStr |
COVID-XR: A Web Management Platform for Coronavirus Detection on X-ray Chest Images |
title_full_unstemmed |
COVID-XR: A Web Management Platform for Coronavirus Detection on X-ray Chest Images |
title_sort |
COVID-XR: A Web Management Platform for Coronavirus Detection on X-ray Chest Images |
dc.creator.none.fl_str_mv |
Orozco, Carlos Ismael Xamena, Eduardo Martinez, Cristian Alejandro Rodriguez, Diego Alejandro |
author |
Orozco, Carlos Ismael |
author_facet |
Orozco, Carlos Ismael Xamena, Eduardo Martinez, Cristian Alejandro Rodriguez, Diego Alejandro |
author_role |
author |
author2 |
Xamena, Eduardo Martinez, Cristian Alejandro Rodriguez, Diego Alejandro |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
DEEP LEARNING X-RAY TEST WEB PLATFORM COVID-19 |
topic |
DEEP LEARNING X-RAY TEST WEB PLATFORM COVID-19 |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
COVID-19 is an infectious disease caused by the SARS-CoV-2 virus. Its symptoms are similar to those of the common flu, including fever, cough, dyspnea, myalgia, and fatigue. Due to its rapid expansion globally, the World Health Organization (OMS) declared it a pandemic. The molecular test commonly used worldwide for direct detection of the virus is the RT-PCR test but it takes time to process and the materials used are scarce. In this work we propose: (a) The design and implementation of a deep neural network architecture for the detection of patients with COVID-19 using as input X-ray images of the chest; the architecture is made up of a feature extraction phase, that is, a pre-trained model VGG16 extracts the features of the image; then in the second phase, a multilayer neural network classifies into one of two particular classes (1: COVID, 0: NO COVID). (b) The implementation of a Web platform that allows interested people to use our architecture in a clear, simple and transparent way. The deep learning algorithm was implemented in Python with specific libraries for the design of neural networks, while the Web platform was implemented in PHP using the Laravel framework and MySQL database. We evaluate the performance of our proposal using the sensitivity, specificity and area under the curve (AUC) evaluation metrics, obtaining good results in very short computational times. Fil: Orozco, Carlos Ismael. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Informática; Argentina Fil: Xamena, Eduardo. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Informática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Martinez, Cristian Alejandro. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Informática; Argentina Fil: Rodriguez, Diego Alejandro. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Informática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
COVID-19 is an infectious disease caused by the SARS-CoV-2 virus. Its symptoms are similar to those of the common flu, including fever, cough, dyspnea, myalgia, and fatigue. Due to its rapid expansion globally, the World Health Organization (OMS) declared it a pandemic. The molecular test commonly used worldwide for direct detection of the virus is the RT-PCR test but it takes time to process and the materials used are scarce. In this work we propose: (a) The design and implementation of a deep neural network architecture for the detection of patients with COVID-19 using as input X-ray images of the chest; the architecture is made up of a feature extraction phase, that is, a pre-trained model VGG16 extracts the features of the image; then in the second phase, a multilayer neural network classifies into one of two particular classes (1: COVID, 0: NO COVID). (b) The implementation of a Web platform that allows interested people to use our architecture in a clear, simple and transparent way. The deep learning algorithm was implemented in Python with specific libraries for the design of neural networks, while the Web platform was implemented in PHP using the Laravel framework and MySQL database. We evaluate the performance of our proposal using the sensitivity, specificity and area under the curve (AUC) evaluation metrics, obtaining good results in very short computational times. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-06-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/137000 Orozco, Carlos Ismael; Xamena, Eduardo; Martinez, Cristian Alejandro; Rodriguez, Diego Alejandro; COVID-XR: A Web Management Platform for Coronavirus Detection on X-ray Chest Images; Institute of Electrical and Electronics Engineers; IEEE Latin America Transactions; 19; 6; 8-6-2021; 1-8 1548-0992 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/137000 |
identifier_str_mv |
Orozco, Carlos Ismael; Xamena, Eduardo; Martinez, Cristian Alejandro; Rodriguez, Diego Alejandro; COVID-XR: A Web Management Platform for Coronavirus Detection on X-ray Chest Images; Institute of Electrical and Electronics Engineers; IEEE Latin America Transactions; 19; 6; 8-6-2021; 1-8 1548-0992 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://latamt.ieeer9.org/index.php/transactions/article/view/4402 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers |
publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614187250089984 |
score |
13.070432 |