Description of self-diffusion coefficients of gases, liquids and fluids at high pressure based on molecular simulation data
- Autores
- Zabaloy, Marcelo Santiago; Vasquez, V.R.; MacEdo, E. A.
- Año de publicación
- 2006
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The purpose of this work is to evaluate the potential of modeling the self-diffusion coefficient (SDC) of real fluids in all fluid states based on Lennard-Jones analytical relationships involving the SDC, the temperature, the density and the pressure. For that, we generated an equation of state (EOS) that interrelates the self-diffusion coefficient, the temperature and the density of the Lennard-Jones (LJ) fluid. We fit the parameters of such LJ-SDC-EOS using recent wide ranging molecular simulation data for the LJ fluid. We also used in this work a LJ pressure-density-temperature EOS that we combined with the LJ-SDC-EOS to make possible the calculation of LJ-SDC values from given temperature and pressure. Both EOSs are written in terms of LJ dimensionless variables, which are defined in terms of the LJ parameters ε and σ. These parameters are meaningful at molecular level. By combining both EOSs, we generated LJ corresponding states charts which make possible to conclude that the LJ fluid captures the observed behavioral patterns of the self-diffusion coefficient of real fluids over a wide range of conditions. In this work, we also performed predictions of the SDC of real fluids in all fluid states. For that, we assumed that a given real fluid behaves as a Lennard-Jones fluid which exactly matches the experimental critical temperature Tc and the experimental critical pressure Pc of the real fluid. Such an assumption implies average true prediction errors of the order of 10% for vapors, light supercritical fluids, some dense supercritical fluids and some liquids. These results make possible to conclude that it is worthwhile to use the LJ fluid reference as a basis to model the self-diffusion coefficient of real fluids, over a wide range of conditions, without resorting to non-LJ correlations for the density-temperature-pressure relationship. The database considered here contains more than 1000 experimental data points. The database practical reduced temperature range is from 0.53 to 2.4, and the practical reduced pressure range is from 0 to 68.4. © 2006 Elsevier B.V. All rights reserved.
Fil: Zabaloy, Marcelo Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
Fil: Vasquez, V.R.. University of Nevada-Reno; Estados Unidos
Fil: MacEdo, E. A.. Universidad de Porto; Portugal - Materia
-
Dense Fluids
Gases
Lennard-Jones
Molecular Theory
Self-Diffusion Coefficient - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/37271
Ver los metadatos del registro completo
id |
CONICETDig_4b36f69ea806a1e61e61894802038201 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/37271 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Description of self-diffusion coefficients of gases, liquids and fluids at high pressure based on molecular simulation dataZabaloy, Marcelo SantiagoVasquez, V.R.MacEdo, E. A.Dense FluidsGasesLennard-JonesMolecular TheorySelf-Diffusion Coefficienthttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2The purpose of this work is to evaluate the potential of modeling the self-diffusion coefficient (SDC) of real fluids in all fluid states based on Lennard-Jones analytical relationships involving the SDC, the temperature, the density and the pressure. For that, we generated an equation of state (EOS) that interrelates the self-diffusion coefficient, the temperature and the density of the Lennard-Jones (LJ) fluid. We fit the parameters of such LJ-SDC-EOS using recent wide ranging molecular simulation data for the LJ fluid. We also used in this work a LJ pressure-density-temperature EOS that we combined with the LJ-SDC-EOS to make possible the calculation of LJ-SDC values from given temperature and pressure. Both EOSs are written in terms of LJ dimensionless variables, which are defined in terms of the LJ parameters ε and σ. These parameters are meaningful at molecular level. By combining both EOSs, we generated LJ corresponding states charts which make possible to conclude that the LJ fluid captures the observed behavioral patterns of the self-diffusion coefficient of real fluids over a wide range of conditions. In this work, we also performed predictions of the SDC of real fluids in all fluid states. For that, we assumed that a given real fluid behaves as a Lennard-Jones fluid which exactly matches the experimental critical temperature Tc and the experimental critical pressure Pc of the real fluid. Such an assumption implies average true prediction errors of the order of 10% for vapors, light supercritical fluids, some dense supercritical fluids and some liquids. These results make possible to conclude that it is worthwhile to use the LJ fluid reference as a basis to model the self-diffusion coefficient of real fluids, over a wide range of conditions, without resorting to non-LJ correlations for the density-temperature-pressure relationship. The database considered here contains more than 1000 experimental data points. The database practical reduced temperature range is from 0.53 to 2.4, and the practical reduced pressure range is from 0 to 68.4. © 2006 Elsevier B.V. All rights reserved.Fil: Zabaloy, Marcelo Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaFil: Vasquez, V.R.. University of Nevada-Reno; Estados UnidosFil: MacEdo, E. A.. Universidad de Porto; PortugalElsevier Science2006-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/37271Zabaloy, Marcelo Santiago; Vasquez, V.R.; MacEdo, E. A.; Description of self-diffusion coefficients of gases, liquids and fluids at high pressure based on molecular simulation data; Elsevier Science; Fluid Phase Equilibria; 242; 1; 4-2006; 43-560378-3812CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.fluid.2005.12.031info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0378381206000252info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:03:16Zoai:ri.conicet.gov.ar:11336/37271instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:03:16.395CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Description of self-diffusion coefficients of gases, liquids and fluids at high pressure based on molecular simulation data |
title |
Description of self-diffusion coefficients of gases, liquids and fluids at high pressure based on molecular simulation data |
spellingShingle |
Description of self-diffusion coefficients of gases, liquids and fluids at high pressure based on molecular simulation data Zabaloy, Marcelo Santiago Dense Fluids Gases Lennard-Jones Molecular Theory Self-Diffusion Coefficient |
title_short |
Description of self-diffusion coefficients of gases, liquids and fluids at high pressure based on molecular simulation data |
title_full |
Description of self-diffusion coefficients of gases, liquids and fluids at high pressure based on molecular simulation data |
title_fullStr |
Description of self-diffusion coefficients of gases, liquids and fluids at high pressure based on molecular simulation data |
title_full_unstemmed |
Description of self-diffusion coefficients of gases, liquids and fluids at high pressure based on molecular simulation data |
title_sort |
Description of self-diffusion coefficients of gases, liquids and fluids at high pressure based on molecular simulation data |
dc.creator.none.fl_str_mv |
Zabaloy, Marcelo Santiago Vasquez, V.R. MacEdo, E. A. |
author |
Zabaloy, Marcelo Santiago |
author_facet |
Zabaloy, Marcelo Santiago Vasquez, V.R. MacEdo, E. A. |
author_role |
author |
author2 |
Vasquez, V.R. MacEdo, E. A. |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Dense Fluids Gases Lennard-Jones Molecular Theory Self-Diffusion Coefficient |
topic |
Dense Fluids Gases Lennard-Jones Molecular Theory Self-Diffusion Coefficient |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.4 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
The purpose of this work is to evaluate the potential of modeling the self-diffusion coefficient (SDC) of real fluids in all fluid states based on Lennard-Jones analytical relationships involving the SDC, the temperature, the density and the pressure. For that, we generated an equation of state (EOS) that interrelates the self-diffusion coefficient, the temperature and the density of the Lennard-Jones (LJ) fluid. We fit the parameters of such LJ-SDC-EOS using recent wide ranging molecular simulation data for the LJ fluid. We also used in this work a LJ pressure-density-temperature EOS that we combined with the LJ-SDC-EOS to make possible the calculation of LJ-SDC values from given temperature and pressure. Both EOSs are written in terms of LJ dimensionless variables, which are defined in terms of the LJ parameters ε and σ. These parameters are meaningful at molecular level. By combining both EOSs, we generated LJ corresponding states charts which make possible to conclude that the LJ fluid captures the observed behavioral patterns of the self-diffusion coefficient of real fluids over a wide range of conditions. In this work, we also performed predictions of the SDC of real fluids in all fluid states. For that, we assumed that a given real fluid behaves as a Lennard-Jones fluid which exactly matches the experimental critical temperature Tc and the experimental critical pressure Pc of the real fluid. Such an assumption implies average true prediction errors of the order of 10% for vapors, light supercritical fluids, some dense supercritical fluids and some liquids. These results make possible to conclude that it is worthwhile to use the LJ fluid reference as a basis to model the self-diffusion coefficient of real fluids, over a wide range of conditions, without resorting to non-LJ correlations for the density-temperature-pressure relationship. The database considered here contains more than 1000 experimental data points. The database practical reduced temperature range is from 0.53 to 2.4, and the practical reduced pressure range is from 0 to 68.4. © 2006 Elsevier B.V. All rights reserved. Fil: Zabaloy, Marcelo Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina Fil: Vasquez, V.R.. University of Nevada-Reno; Estados Unidos Fil: MacEdo, E. A.. Universidad de Porto; Portugal |
description |
The purpose of this work is to evaluate the potential of modeling the self-diffusion coefficient (SDC) of real fluids in all fluid states based on Lennard-Jones analytical relationships involving the SDC, the temperature, the density and the pressure. For that, we generated an equation of state (EOS) that interrelates the self-diffusion coefficient, the temperature and the density of the Lennard-Jones (LJ) fluid. We fit the parameters of such LJ-SDC-EOS using recent wide ranging molecular simulation data for the LJ fluid. We also used in this work a LJ pressure-density-temperature EOS that we combined with the LJ-SDC-EOS to make possible the calculation of LJ-SDC values from given temperature and pressure. Both EOSs are written in terms of LJ dimensionless variables, which are defined in terms of the LJ parameters ε and σ. These parameters are meaningful at molecular level. By combining both EOSs, we generated LJ corresponding states charts which make possible to conclude that the LJ fluid captures the observed behavioral patterns of the self-diffusion coefficient of real fluids over a wide range of conditions. In this work, we also performed predictions of the SDC of real fluids in all fluid states. For that, we assumed that a given real fluid behaves as a Lennard-Jones fluid which exactly matches the experimental critical temperature Tc and the experimental critical pressure Pc of the real fluid. Such an assumption implies average true prediction errors of the order of 10% for vapors, light supercritical fluids, some dense supercritical fluids and some liquids. These results make possible to conclude that it is worthwhile to use the LJ fluid reference as a basis to model the self-diffusion coefficient of real fluids, over a wide range of conditions, without resorting to non-LJ correlations for the density-temperature-pressure relationship. The database considered here contains more than 1000 experimental data points. The database practical reduced temperature range is from 0.53 to 2.4, and the practical reduced pressure range is from 0 to 68.4. © 2006 Elsevier B.V. All rights reserved. |
publishDate |
2006 |
dc.date.none.fl_str_mv |
2006-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/37271 Zabaloy, Marcelo Santiago; Vasquez, V.R.; MacEdo, E. A.; Description of self-diffusion coefficients of gases, liquids and fluids at high pressure based on molecular simulation data; Elsevier Science; Fluid Phase Equilibria; 242; 1; 4-2006; 43-56 0378-3812 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/37271 |
identifier_str_mv |
Zabaloy, Marcelo Santiago; Vasquez, V.R.; MacEdo, E. A.; Description of self-diffusion coefficients of gases, liquids and fluids at high pressure based on molecular simulation data; Elsevier Science; Fluid Phase Equilibria; 242; 1; 4-2006; 43-56 0378-3812 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.fluid.2005.12.031 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0378381206000252 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846781261943668736 |
score |
13.120347 |