Virial series for inhomogeneous fluids applied to the Lennard-Jones wall-fluid surface tension at planar and curved walls

Autores
Urrutia, Ignacio; Paganini, Iván Eduardo
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We formulate a straightforward scheme of statistical mechanics for inhomogeneous systems that includes the virial series in powers of the activity for the grand free energy and density distributions. There, cluster integrals formulated for inhomogeneous systems play a main role. We center on second order terms that were analyzed in the case of hard-wall confinement, focusing in planar, spherical, and cylindrical walls. Further analysis was devoted to the Lennard-Jones system and its generalization, the 2k-k potential. For these interaction potentials, the second cluster integral was evaluated analytically. We obtained the fluid-substrate surface tension at second order for the planar, spherical, and cylindrical confinement. Spherical and cylindrical cases were analyzed using a series expansion in the radius including higher order terms. We detected a lnR/R2 dependence of the surface tension for the standard Lennard-Jones system confined by spherical and cylindrical walls, no matter if particles are inside or outside of the hard walls. The analysis was extended to bending and Gaussian curvatures, where exact expressions were also obtained.
Fil: Urrutia, Ignacio. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Paganini, Iván Eduardo. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
VIRIAL SERIES
INHOMOGENEOUS FLUIDS
LENNARD-JONES
CONFINED FLUIDS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/45122

id CONICETDig_8e29bea417536a0db4cb744e28a2fae5
oai_identifier_str oai:ri.conicet.gov.ar:11336/45122
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Virial series for inhomogeneous fluids applied to the Lennard-Jones wall-fluid surface tension at planar and curved wallsUrrutia, IgnacioPaganini, Iván EduardoVIRIAL SERIESINHOMOGENEOUS FLUIDSLENNARD-JONESCONFINED FLUIDShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1We formulate a straightforward scheme of statistical mechanics for inhomogeneous systems that includes the virial series in powers of the activity for the grand free energy and density distributions. There, cluster integrals formulated for inhomogeneous systems play a main role. We center on second order terms that were analyzed in the case of hard-wall confinement, focusing in planar, spherical, and cylindrical walls. Further analysis was devoted to the Lennard-Jones system and its generalization, the 2k-k potential. For these interaction potentials, the second cluster integral was evaluated analytically. We obtained the fluid-substrate surface tension at second order for the planar, spherical, and cylindrical confinement. Spherical and cylindrical cases were analyzed using a series expansion in the radius including higher order terms. We detected a lnR/R2 dependence of the surface tension for the standard Lennard-Jones system confined by spherical and cylindrical walls, no matter if particles are inside or outside of the hard walls. The analysis was extended to bending and Gaussian curvatures, where exact expressions were also obtained.Fil: Urrutia, Ignacio. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Paganini, Iván Eduardo. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaAmerican Institute of Physics2016-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/45122Urrutia, Ignacio; Paganini, Iván Eduardo; Virial series for inhomogeneous fluids applied to the Lennard-Jones wall-fluid surface tension at planar and curved walls; American Institute of Physics; Journal of Chemical Physics; 144; 17; 5-2016; 1-13; 1741020021-9606CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1063/1.4947587info:eu-repo/semantics/altIdentifier/url/https://aip.scitation.org/doi/10.1063/1.4947587info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:53:19Zoai:ri.conicet.gov.ar:11336/45122instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:53:20.034CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Virial series for inhomogeneous fluids applied to the Lennard-Jones wall-fluid surface tension at planar and curved walls
title Virial series for inhomogeneous fluids applied to the Lennard-Jones wall-fluid surface tension at planar and curved walls
spellingShingle Virial series for inhomogeneous fluids applied to the Lennard-Jones wall-fluid surface tension at planar and curved walls
Urrutia, Ignacio
VIRIAL SERIES
INHOMOGENEOUS FLUIDS
LENNARD-JONES
CONFINED FLUIDS
title_short Virial series for inhomogeneous fluids applied to the Lennard-Jones wall-fluid surface tension at planar and curved walls
title_full Virial series for inhomogeneous fluids applied to the Lennard-Jones wall-fluid surface tension at planar and curved walls
title_fullStr Virial series for inhomogeneous fluids applied to the Lennard-Jones wall-fluid surface tension at planar and curved walls
title_full_unstemmed Virial series for inhomogeneous fluids applied to the Lennard-Jones wall-fluid surface tension at planar and curved walls
title_sort Virial series for inhomogeneous fluids applied to the Lennard-Jones wall-fluid surface tension at planar and curved walls
dc.creator.none.fl_str_mv Urrutia, Ignacio
Paganini, Iván Eduardo
author Urrutia, Ignacio
author_facet Urrutia, Ignacio
Paganini, Iván Eduardo
author_role author
author2 Paganini, Iván Eduardo
author2_role author
dc.subject.none.fl_str_mv VIRIAL SERIES
INHOMOGENEOUS FLUIDS
LENNARD-JONES
CONFINED FLUIDS
topic VIRIAL SERIES
INHOMOGENEOUS FLUIDS
LENNARD-JONES
CONFINED FLUIDS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We formulate a straightforward scheme of statistical mechanics for inhomogeneous systems that includes the virial series in powers of the activity for the grand free energy and density distributions. There, cluster integrals formulated for inhomogeneous systems play a main role. We center on second order terms that were analyzed in the case of hard-wall confinement, focusing in planar, spherical, and cylindrical walls. Further analysis was devoted to the Lennard-Jones system and its generalization, the 2k-k potential. For these interaction potentials, the second cluster integral was evaluated analytically. We obtained the fluid-substrate surface tension at second order for the planar, spherical, and cylindrical confinement. Spherical and cylindrical cases were analyzed using a series expansion in the radius including higher order terms. We detected a lnR/R2 dependence of the surface tension for the standard Lennard-Jones system confined by spherical and cylindrical walls, no matter if particles are inside or outside of the hard walls. The analysis was extended to bending and Gaussian curvatures, where exact expressions were also obtained.
Fil: Urrutia, Ignacio. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Paganini, Iván Eduardo. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description We formulate a straightforward scheme of statistical mechanics for inhomogeneous systems that includes the virial series in powers of the activity for the grand free energy and density distributions. There, cluster integrals formulated for inhomogeneous systems play a main role. We center on second order terms that were analyzed in the case of hard-wall confinement, focusing in planar, spherical, and cylindrical walls. Further analysis was devoted to the Lennard-Jones system and its generalization, the 2k-k potential. For these interaction potentials, the second cluster integral was evaluated analytically. We obtained the fluid-substrate surface tension at second order for the planar, spherical, and cylindrical confinement. Spherical and cylindrical cases were analyzed using a series expansion in the radius including higher order terms. We detected a lnR/R2 dependence of the surface tension for the standard Lennard-Jones system confined by spherical and cylindrical walls, no matter if particles are inside or outside of the hard walls. The analysis was extended to bending and Gaussian curvatures, where exact expressions were also obtained.
publishDate 2016
dc.date.none.fl_str_mv 2016-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/45122
Urrutia, Ignacio; Paganini, Iván Eduardo; Virial series for inhomogeneous fluids applied to the Lennard-Jones wall-fluid surface tension at planar and curved walls; American Institute of Physics; Journal of Chemical Physics; 144; 17; 5-2016; 1-13; 174102
0021-9606
CONICET Digital
CONICET
url http://hdl.handle.net/11336/45122
identifier_str_mv Urrutia, Ignacio; Paganini, Iván Eduardo; Virial series for inhomogeneous fluids applied to the Lennard-Jones wall-fluid surface tension at planar and curved walls; American Institute of Physics; Journal of Chemical Physics; 144; 17; 5-2016; 1-13; 174102
0021-9606
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1063/1.4947587
info:eu-repo/semantics/altIdentifier/url/https://aip.scitation.org/doi/10.1063/1.4947587
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Institute of Physics
publisher.none.fl_str_mv American Institute of Physics
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269216474923008
score 13.13397