SketchZooms: Deep Multi-view Descriptors for Matching Line Drawings
- Autores
- Navarro, Jose Pablo; Orlando, José Ignacio; Delrieux, Claudio Augusto; Iarussi, Emmanuel
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Finding point-wise correspondences between images is a long-standing problem in image analysis. This becomes particularly challenging for sketch images, due to the varying nature of human drawing style, projection distortions and viewport changes. In this paper, we present the first attempt to obtain a learned descriptor for dense registration in line drawings. Based on recent deep learning techniques for corresponding photographs, we designed descriptors to locally match image pairs where the object of interest belongs to the same semantic category, yet still differ drastically in shape, form, and projection angle. To this end, we have specifically crafted a data set of synthetic sketches using non-photorealistic rendering over a large collection of part-based registered 3D models. After training, a neural network generates descriptors for every pixel in an input image, which are shown togeneralize correctly in unseen sketches hand-drawn by humans. We evaluate our method against a baseline of correspondences data collected from expert designers, in addition to comparisons with other descriptors that have been proven effective in sketches. Code, data and further resources will be publicly released by the time of publication.
Fil: Navarro, Jose Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto Patagónico de Ciencias Sociales y Humanas; Argentina. Universidad Nacional de la Patagonia "San Juan Bosco". Facultad de Ingeniería - Sede Puerto Madryn. Departamento de Informática; Argentina
Fil: Orlando, José Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina
Fil: Delrieux, Claudio Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentina
Fil: Iarussi, Emmanuel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires; Argentina - Materia
-
2D MORPHING
IMAGE AND VIDEO PROCESSING
IMAGE AND VIDEO PROCESSING
IMAGE AND VIDEO PROCESSING
IMAGE DATABASES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/135664
Ver los metadatos del registro completo
id |
CONICETDig_4b310a641453ebe3a1485d0444f6db4c |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/135664 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
SketchZooms: Deep Multi-view Descriptors for Matching Line DrawingsNavarro, Jose PabloOrlando, José IgnacioDelrieux, Claudio AugustoIarussi, Emmanuel2D MORPHINGIMAGE AND VIDEO PROCESSINGIMAGE AND VIDEO PROCESSINGIMAGE AND VIDEO PROCESSINGIMAGE DATABASEShttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Finding point-wise correspondences between images is a long-standing problem in image analysis. This becomes particularly challenging for sketch images, due to the varying nature of human drawing style, projection distortions and viewport changes. In this paper, we present the first attempt to obtain a learned descriptor for dense registration in line drawings. Based on recent deep learning techniques for corresponding photographs, we designed descriptors to locally match image pairs where the object of interest belongs to the same semantic category, yet still differ drastically in shape, form, and projection angle. To this end, we have specifically crafted a data set of synthetic sketches using non-photorealistic rendering over a large collection of part-based registered 3D models. After training, a neural network generates descriptors for every pixel in an input image, which are shown togeneralize correctly in unseen sketches hand-drawn by humans. We evaluate our method against a baseline of correspondences data collected from expert designers, in addition to comparisons with other descriptors that have been proven effective in sketches. Code, data and further resources will be publicly released by the time of publication.Fil: Navarro, Jose Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto Patagónico de Ciencias Sociales y Humanas; Argentina. Universidad Nacional de la Patagonia "San Juan Bosco". Facultad de Ingeniería - Sede Puerto Madryn. Departamento de Informática; ArgentinaFil: Orlando, José Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; ArgentinaFil: Delrieux, Claudio Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; ArgentinaFil: Iarussi, Emmanuel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires; ArgentinaWiley Blackwell Publishing, Inc2021-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/135664Navarro, Jose Pablo; Orlando, José Ignacio; Delrieux, Claudio Augusto; Iarussi, Emmanuel; SketchZooms: Deep Multi-view Descriptors for Matching Line Drawings; Wiley Blackwell Publishing, Inc; Computer Graphics Forum; 40; 1; 2-2021; 410-4230167-7055CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1111/cgf.14197info:eu-repo/semantics/altIdentifier/doi/10.1111/cgf.14197info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1912.05019info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:05:44Zoai:ri.conicet.gov.ar:11336/135664instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:05:45.029CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
SketchZooms: Deep Multi-view Descriptors for Matching Line Drawings |
title |
SketchZooms: Deep Multi-view Descriptors for Matching Line Drawings |
spellingShingle |
SketchZooms: Deep Multi-view Descriptors for Matching Line Drawings Navarro, Jose Pablo 2D MORPHING IMAGE AND VIDEO PROCESSING IMAGE AND VIDEO PROCESSING IMAGE AND VIDEO PROCESSING IMAGE DATABASES |
title_short |
SketchZooms: Deep Multi-view Descriptors for Matching Line Drawings |
title_full |
SketchZooms: Deep Multi-view Descriptors for Matching Line Drawings |
title_fullStr |
SketchZooms: Deep Multi-view Descriptors for Matching Line Drawings |
title_full_unstemmed |
SketchZooms: Deep Multi-view Descriptors for Matching Line Drawings |
title_sort |
SketchZooms: Deep Multi-view Descriptors for Matching Line Drawings |
dc.creator.none.fl_str_mv |
Navarro, Jose Pablo Orlando, José Ignacio Delrieux, Claudio Augusto Iarussi, Emmanuel |
author |
Navarro, Jose Pablo |
author_facet |
Navarro, Jose Pablo Orlando, José Ignacio Delrieux, Claudio Augusto Iarussi, Emmanuel |
author_role |
author |
author2 |
Orlando, José Ignacio Delrieux, Claudio Augusto Iarussi, Emmanuel |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
2D MORPHING IMAGE AND VIDEO PROCESSING IMAGE AND VIDEO PROCESSING IMAGE AND VIDEO PROCESSING IMAGE DATABASES |
topic |
2D MORPHING IMAGE AND VIDEO PROCESSING IMAGE AND VIDEO PROCESSING IMAGE AND VIDEO PROCESSING IMAGE DATABASES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Finding point-wise correspondences between images is a long-standing problem in image analysis. This becomes particularly challenging for sketch images, due to the varying nature of human drawing style, projection distortions and viewport changes. In this paper, we present the first attempt to obtain a learned descriptor for dense registration in line drawings. Based on recent deep learning techniques for corresponding photographs, we designed descriptors to locally match image pairs where the object of interest belongs to the same semantic category, yet still differ drastically in shape, form, and projection angle. To this end, we have specifically crafted a data set of synthetic sketches using non-photorealistic rendering over a large collection of part-based registered 3D models. After training, a neural network generates descriptors for every pixel in an input image, which are shown togeneralize correctly in unseen sketches hand-drawn by humans. We evaluate our method against a baseline of correspondences data collected from expert designers, in addition to comparisons with other descriptors that have been proven effective in sketches. Code, data and further resources will be publicly released by the time of publication. Fil: Navarro, Jose Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto Patagónico de Ciencias Sociales y Humanas; Argentina. Universidad Nacional de la Patagonia "San Juan Bosco". Facultad de Ingeniería - Sede Puerto Madryn. Departamento de Informática; Argentina Fil: Orlando, José Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina Fil: Delrieux, Claudio Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentina Fil: Iarussi, Emmanuel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires; Argentina |
description |
Finding point-wise correspondences between images is a long-standing problem in image analysis. This becomes particularly challenging for sketch images, due to the varying nature of human drawing style, projection distortions and viewport changes. In this paper, we present the first attempt to obtain a learned descriptor for dense registration in line drawings. Based on recent deep learning techniques for corresponding photographs, we designed descriptors to locally match image pairs where the object of interest belongs to the same semantic category, yet still differ drastically in shape, form, and projection angle. To this end, we have specifically crafted a data set of synthetic sketches using non-photorealistic rendering over a large collection of part-based registered 3D models. After training, a neural network generates descriptors for every pixel in an input image, which are shown togeneralize correctly in unseen sketches hand-drawn by humans. We evaluate our method against a baseline of correspondences data collected from expert designers, in addition to comparisons with other descriptors that have been proven effective in sketches. Code, data and further resources will be publicly released by the time of publication. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/135664 Navarro, Jose Pablo; Orlando, José Ignacio; Delrieux, Claudio Augusto; Iarussi, Emmanuel; SketchZooms: Deep Multi-view Descriptors for Matching Line Drawings; Wiley Blackwell Publishing, Inc; Computer Graphics Forum; 40; 1; 2-2021; 410-423 0167-7055 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/135664 |
identifier_str_mv |
Navarro, Jose Pablo; Orlando, José Ignacio; Delrieux, Claudio Augusto; Iarussi, Emmanuel; SketchZooms: Deep Multi-view Descriptors for Matching Line Drawings; Wiley Blackwell Publishing, Inc; Computer Graphics Forum; 40; 1; 2-2021; 410-423 0167-7055 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1111/cgf.14197 info:eu-repo/semantics/altIdentifier/doi/10.1111/cgf.14197 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1912.05019 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Wiley Blackwell Publishing, Inc |
publisher.none.fl_str_mv |
Wiley Blackwell Publishing, Inc |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269926337806336 |
score |
13.13397 |