A robust data-worth analysis framework for soil moisture flow by hybridizing sequential data assimilation and machine learning
- Autores
- Wang, Yakun; Shi, Liangsheng; Lin, Lin; Holzman, Mauro Ezequiel; Carmona, Facundo; Zhang, Qiuru
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- As the collection of soil moisture data is often costly, it is essential to implement data-worth analysis in advance to obtain a cost-effective data collection scheme. In previous data-worth analysis, the model structural error is often neglected. In this paper, we propose a robust data-worth analysis framework based on a hybrid data assimilation method. By constructing Gaussian process (GP) error model, this study attempts to alleviate biased data-worth assessments caused by unknown model structural errors, and to excavate complementary values of multisource data without resorting to multiple governing equations. The results demonstrated that this proposed framework effectively identified and compensated for complex model structural errors. By training prior data, more accurate potential observations were obtained and data-worth estimation accuracy was improved. The scenario diversity played a crucial role in establishing an effective GP training system. The integration of soil temperature into GP training unraveled new information and improved the data-worth estimation. Instead of traditional evapotranspiration calculations, the direct inclusion of easy-to-obtain meteorological data into GP training yielded better data-worth assessment.
Fil: Wang, Yakun. Wuhan University; China
Fil: Shi, Liangsheng. Wuhan University; China
Fil: Lin, Lin. Wuhan University; China
Fil: Holzman, Mauro Ezequiel. Comisión de Investigaciones Científicas de la Provincia de Buenos Aires. Instituto de Hidrología de Llanuras "Dr. Eduardo Jorge Usunoff". - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto de Hidrología de Llanuras "Dr. Eduardo Jorge Usunoff". - Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto de Hidrología de Llanuras "Dr. Eduardo Jorge Usunoff"; Argentina
Fil: Carmona, Facundo. Comisión de Investigaciones Científicas de la Provincia de Buenos Aires. Instituto de Hidrología de Llanuras "Dr. Eduardo Jorge Usunoff". - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto de Hidrología de Llanuras "Dr. Eduardo Jorge Usunoff". - Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto de Hidrología de Llanuras "Dr. Eduardo Jorge Usunoff"; Argentina
Fil: Zhang, Qiuru. Wuhan University; China - Materia
-
soil moisture
machine learning - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/163420
Ver los metadatos del registro completo
id |
CONICETDig_4b18c057d484362bfdaa926a1d1697e9 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/163420 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A robust data-worth analysis framework for soil moisture flow by hybridizing sequential data assimilation and machine learningWang, YakunShi, LiangshengLin, LinHolzman, Mauro EzequielCarmona, FacundoZhang, Qiurusoil moisturemachine learninghttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1As the collection of soil moisture data is often costly, it is essential to implement data-worth analysis in advance to obtain a cost-effective data collection scheme. In previous data-worth analysis, the model structural error is often neglected. In this paper, we propose a robust data-worth analysis framework based on a hybrid data assimilation method. By constructing Gaussian process (GP) error model, this study attempts to alleviate biased data-worth assessments caused by unknown model structural errors, and to excavate complementary values of multisource data without resorting to multiple governing equations. The results demonstrated that this proposed framework effectively identified and compensated for complex model structural errors. By training prior data, more accurate potential observations were obtained and data-worth estimation accuracy was improved. The scenario diversity played a crucial role in establishing an effective GP training system. The integration of soil temperature into GP training unraveled new information and improved the data-worth estimation. Instead of traditional evapotranspiration calculations, the direct inclusion of easy-to-obtain meteorological data into GP training yielded better data-worth assessment.Fil: Wang, Yakun. Wuhan University; ChinaFil: Shi, Liangsheng. Wuhan University; ChinaFil: Lin, Lin. Wuhan University; ChinaFil: Holzman, Mauro Ezequiel. Comisión de Investigaciones Científicas de la Provincia de Buenos Aires. Instituto de Hidrología de Llanuras "Dr. Eduardo Jorge Usunoff". - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto de Hidrología de Llanuras "Dr. Eduardo Jorge Usunoff". - Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto de Hidrología de Llanuras "Dr. Eduardo Jorge Usunoff"; ArgentinaFil: Carmona, Facundo. Comisión de Investigaciones Científicas de la Provincia de Buenos Aires. Instituto de Hidrología de Llanuras "Dr. Eduardo Jorge Usunoff". - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto de Hidrología de Llanuras "Dr. Eduardo Jorge Usunoff". - Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto de Hidrología de Llanuras "Dr. Eduardo Jorge Usunoff"; ArgentinaFil: Zhang, Qiuru. Wuhan University; ChinaSoil Science Society of America2020-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/163420Wang, Yakun; Shi, Liangsheng; Lin, Lin; Holzman, Mauro Ezequiel; Carmona, Facundo; et al.; A robust data-worth analysis framework for soil moisture flow by hybridizing sequential data assimilation and machine learning; Soil Science Society of America; Vadose Zone Journal; 19; 1; 5-2020; 1-181539-1663CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/vzj2.20026info:eu-repo/semantics/altIdentifier/doi/10.1002/vzj2.20026info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:43:50Zoai:ri.conicet.gov.ar:11336/163420instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:43:50.327CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A robust data-worth analysis framework for soil moisture flow by hybridizing sequential data assimilation and machine learning |
title |
A robust data-worth analysis framework for soil moisture flow by hybridizing sequential data assimilation and machine learning |
spellingShingle |
A robust data-worth analysis framework for soil moisture flow by hybridizing sequential data assimilation and machine learning Wang, Yakun soil moisture machine learning |
title_short |
A robust data-worth analysis framework for soil moisture flow by hybridizing sequential data assimilation and machine learning |
title_full |
A robust data-worth analysis framework for soil moisture flow by hybridizing sequential data assimilation and machine learning |
title_fullStr |
A robust data-worth analysis framework for soil moisture flow by hybridizing sequential data assimilation and machine learning |
title_full_unstemmed |
A robust data-worth analysis framework for soil moisture flow by hybridizing sequential data assimilation and machine learning |
title_sort |
A robust data-worth analysis framework for soil moisture flow by hybridizing sequential data assimilation and machine learning |
dc.creator.none.fl_str_mv |
Wang, Yakun Shi, Liangsheng Lin, Lin Holzman, Mauro Ezequiel Carmona, Facundo Zhang, Qiuru |
author |
Wang, Yakun |
author_facet |
Wang, Yakun Shi, Liangsheng Lin, Lin Holzman, Mauro Ezequiel Carmona, Facundo Zhang, Qiuru |
author_role |
author |
author2 |
Shi, Liangsheng Lin, Lin Holzman, Mauro Ezequiel Carmona, Facundo Zhang, Qiuru |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
soil moisture machine learning |
topic |
soil moisture machine learning |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
As the collection of soil moisture data is often costly, it is essential to implement data-worth analysis in advance to obtain a cost-effective data collection scheme. In previous data-worth analysis, the model structural error is often neglected. In this paper, we propose a robust data-worth analysis framework based on a hybrid data assimilation method. By constructing Gaussian process (GP) error model, this study attempts to alleviate biased data-worth assessments caused by unknown model structural errors, and to excavate complementary values of multisource data without resorting to multiple governing equations. The results demonstrated that this proposed framework effectively identified and compensated for complex model structural errors. By training prior data, more accurate potential observations were obtained and data-worth estimation accuracy was improved. The scenario diversity played a crucial role in establishing an effective GP training system. The integration of soil temperature into GP training unraveled new information and improved the data-worth estimation. Instead of traditional evapotranspiration calculations, the direct inclusion of easy-to-obtain meteorological data into GP training yielded better data-worth assessment. Fil: Wang, Yakun. Wuhan University; China Fil: Shi, Liangsheng. Wuhan University; China Fil: Lin, Lin. Wuhan University; China Fil: Holzman, Mauro Ezequiel. Comisión de Investigaciones Científicas de la Provincia de Buenos Aires. Instituto de Hidrología de Llanuras "Dr. Eduardo Jorge Usunoff". - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto de Hidrología de Llanuras "Dr. Eduardo Jorge Usunoff". - Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto de Hidrología de Llanuras "Dr. Eduardo Jorge Usunoff"; Argentina Fil: Carmona, Facundo. Comisión de Investigaciones Científicas de la Provincia de Buenos Aires. Instituto de Hidrología de Llanuras "Dr. Eduardo Jorge Usunoff". - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto de Hidrología de Llanuras "Dr. Eduardo Jorge Usunoff". - Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto de Hidrología de Llanuras "Dr. Eduardo Jorge Usunoff"; Argentina Fil: Zhang, Qiuru. Wuhan University; China |
description |
As the collection of soil moisture data is often costly, it is essential to implement data-worth analysis in advance to obtain a cost-effective data collection scheme. In previous data-worth analysis, the model structural error is often neglected. In this paper, we propose a robust data-worth analysis framework based on a hybrid data assimilation method. By constructing Gaussian process (GP) error model, this study attempts to alleviate biased data-worth assessments caused by unknown model structural errors, and to excavate complementary values of multisource data without resorting to multiple governing equations. The results demonstrated that this proposed framework effectively identified and compensated for complex model structural errors. By training prior data, more accurate potential observations were obtained and data-worth estimation accuracy was improved. The scenario diversity played a crucial role in establishing an effective GP training system. The integration of soil temperature into GP training unraveled new information and improved the data-worth estimation. Instead of traditional evapotranspiration calculations, the direct inclusion of easy-to-obtain meteorological data into GP training yielded better data-worth assessment. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/163420 Wang, Yakun; Shi, Liangsheng; Lin, Lin; Holzman, Mauro Ezequiel; Carmona, Facundo; et al.; A robust data-worth analysis framework for soil moisture flow by hybridizing sequential data assimilation and machine learning; Soil Science Society of America; Vadose Zone Journal; 19; 1; 5-2020; 1-18 1539-1663 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/163420 |
identifier_str_mv |
Wang, Yakun; Shi, Liangsheng; Lin, Lin; Holzman, Mauro Ezequiel; Carmona, Facundo; et al.; A robust data-worth analysis framework for soil moisture flow by hybridizing sequential data assimilation and machine learning; Soil Science Society of America; Vadose Zone Journal; 19; 1; 5-2020; 1-18 1539-1663 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/vzj2.20026 info:eu-repo/semantics/altIdentifier/doi/10.1002/vzj2.20026 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Soil Science Society of America |
publisher.none.fl_str_mv |
Soil Science Society of America |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613379077963776 |
score |
13.070432 |